logicSuppose you want to send in the mail a valuable object to a friend. You have a box which is big enough to hold the object. The box has a locking ring which is large enough to have a lock attached and you have several locks with keys. However, your friend does not have the key to any lock that you have. You cannot send the key in an unlocked box since it may be stolen or copied. How do you send the valuable object, locked, to your friend - so it may be opened by your friend?

Send the box with a lock attached and locked. Your friend attaches his or her own lock and sends the box back to you. You remove your lock and send it back to your friend. You remove your lock and send it back to your friend. Your friend may then remove the lock she or he put on and open the box.

interviewlogicmathA man has two ropes of varying thickness (Those two ropes are not identical, they aren’t the same density nor the same length nor the same width). Each rope burns in 60 minutes. He actually wants to measure 45 mins. How can he measure 45 mins using only these two ropes.
He can’t cut the one rope in half because the ropes are non-homogeneous and he can’t be sure how long it will burn.

He will burn one of the rope at both the ends and the second rope at one end. After half an hour, the first one burns completely and at this point of time, he will burn the other end of the second rope so now it will take 15 mins more to completely burn. so total time is 30+15 i.e. 45mins.

logicLast week, the local Primary school was visited by the Government School Inspector who was there to check that teachers were performing well in their respective classes. He was very impressed with one particular teacher. The Inspector noticed that each time the class teacher asked a question, every child in the class put up their hands enthusiastically to answer it. More surprisingly, whilst the teacher chose a different child to answer the questions each time, the answers were always correct.
Why would this be?

The children were instructed to ALL raise their hands whenever a question was asked. It did not matter whether they knew the answer or not. If they did not know the answer, however, they would raise their LEFT hand. If they knew the answer, they would raise their RIGHT hand. The class teacher would choose a different child each time, but always the ones who had their RIGHT hand raised.

logicshortThis is a newspaper headline:
Workers Strike - Want to Make Less Money!
What is going on?

The workers work at the mint and are tired of being overworked. They want to work less, which is making less money, since money is made at the mind!

cleanshortWhat is it that goes up and goes down but does not move?

The temperature.

logicOnce upon a time, in the West Lake village, a servant lived with his master. After service of about 30 years, his master became ill and was going to die. One day, the master called his servant and asked him for a wish. It could be any wish but just one. The master gave him one day to think about it. The servant became very happy and went to his mother for discussion about the wish. His mother was blind and she asked her son for making a wish for her eye-sight to come back. Then the servant went to his wife. She became very excited and asked for a son as they were childless for many years. After that, the servant went to his father who wanted to be rich and so he asked his son to wish for a lot of money. The next day he went to his master and made one wish through which all the three (mother, father, wife) got what they wanted. You have to tell what the servant asked the master.

The servant said, "My mother wants to see her grandson swinging on a swing of gold."

logicmathThere are 1 million closed school lockers in a row, labeled 1 through 1,000,000.
You first go through and flip every locker open.
Then you go through and flip every other locker (locker 2, 4, 6, etc...). When you're done, all the even-numbered lockers are closed.
You then go through and flip every third locker (3, 6, 9, etc...). "Flipping" mean you open it if it's closed, and close it if it's open. For example, as you go through this time, you close locker 3 (because it was still open after the previous run through), but you open locker 6, since you had closed it in the previous run through.
Then you go through and flip every fourth locker (4, 8, 12, etc...), then every fifth locker (5, 10, 15, etc...), then every sixth locker (6, 12, 18, etc...) and so on. At the end, you're going through and flipping every 999,998th locker (which is just locker 999,998), then every 999,999th locker (which is just locker 999,999), and finally, every 1,000,000th locker (which is just locker 1,000,000).
At the end of this, is locker 1,000,000 open or closed?

Locker 1,000,000 will be open.
If you think about it, the number of times that each locker is flipped is equal to the number of factors it has. For example, locker 12 has factors 1, 2, 3, 4, 6, and 12, and will thus be flipped 6 times (it will end be flipped when you flip every one, every 2nd, every 3rd, every 4th, every 6th, and every 12th locker). It will end up closed, since flipping an even number of times will return it to its starting position. You can see that if a locker number has an even number of factors, it will end up closed. If it has an odd number of factors, it will end up open.
As it turns out, the only types of numbers that have an odd number of factors are squares. This is because factors come in pairs, and for squares, one of those pairs is the square root, which is duplicated and thus doesn't count twice as a factor. For example, 12's factors are 1 x 12, 2 x 6, and 3 x 4 (6 total factors). On the other hand, 16's factors are 1 x 16, 2 x 8, and 4 x 4 (5 total factors).
So lockers 1, 4, 9, 16, 25, etc... will all be open. Since 1,000,000 is a square number (1000 x 1000), it will be open as well.

cleanfunnylogicA woman with no driver license goes the wrong way on a one-way street and turns left at a corner with a no left turn sign. A policeman sees her but does nothing... Why?

She is walking.

logicmathA swan sits at the center of a perfectly circular lake. At an edge of the lake stands a ravenous monster waiting to devour the swan. The monster can not enter the water, but it will run around the circumference of the lake to try to catch the swan as soon as it reaches the shore. The monster moves at 4 times the speed of the swan, and it will always move in the direction along the shore that brings it closer to the swan the quickest. Both the swan and the the monster can change directions in an instant.
The swan knows that if it can reach the lake's shore without the monster right on top of it, it can instantly escape into the surrounding forest.
How can the swan succesfully escape?

Assume the radius of the lake is R feet. So the circumference of the lake is (2*pi*R). If the swan swims R/4 feet, (or, put another way, 0.25R feet) straight away from the center of the lake, and then begins swimming in a circle around the center, then it will be able to swim around this circle in the exact same amount of time as the monster will be able to run around the lake's shore (since this inner circle's circumference is 2*pi*(R/4), which is exactly 4 times shorter than the shore's circumference).
From this point, the swan can move a millimeter inward toward the lake's center, and begin swimming around the center in a circle from this distance. It is now going around a very slightly smaller circle than it was a moment ago, and thus will be able to swim around this circle FASTER than the monster can run around the shore.
The swan can keep swimming around this way, pulling further away each second, until finally it is on the opposite side of its inner circle from where the monster is on the shore. At this point, the swan aims directly toward the closest shore and begins swimming that way. At this point, the swan has to swim [0.75R feet + 1 millimeter] to get to shore. Meanwhile, the monster will have to run R*pi feet (half the circumference of the lake) to get to where the swan is headed.
The monster runs four times as fast as the swan, but you can see that it has more than four times as far to run:
[0.75R feet + 1 millimeter] * 4 < R*pi
[This math could actually be incorrect if R were very very small, but in that case we could just say the swan swam inward even less than a millimeter, and make the math work out correctly.]
Because the swan has less than a fourth of the distance to travel as the monster, it will reach the shore before the monster reaches where it is and successfully escape.

logicMany years ago a wealthy old man was near death. He wished to leave his fortune to one of his three children. The old man wanted to know that his fortune would be in wise hands. He stipulated that his estate would be left to the child who would sing him half as many songs as days that he had left to live.The eldest son said he couldn't comply because he didn't know how many days his father had left to live and besides he was too busy. The youngest son said the same thing. The man ended up leaving his money to his third child a daughter. What did his daughter do?

Every other day, the daughter sang her father a song.