Difficult riddles

logicmath

4 gallon of water

How to measure exactly 4 gallon of water from 3 gallon and 5 gallon jars, given, you have unlimited water supply from a running tap.
Step 1. Fill 3 gallon jar with water. ( 5p – 0, 3p – 3) Step 2. Pour all its water into 5 gallon jar. (5p – 3, 3p – 0) Step 3. Fill 3 gallon jar again. ( 5p – 3, 3p – 3) Step 4. Pour its water into 5 gallon jar untill it is full. Now you will have exactly 1 gallon water remaining in 3 gallon jar. (5p – 5, 3p – 1) Step 5. Empty 5 gallon jar, pour 1 gallon water from 3 gallon jar into it. Now 5 gallon jar has exactly 1 gallon of water. (5p – 1, 3p – 0) Step 6. Fill 3 gallon jar again and pour all its water into 5 gallon jar, thus 5 gallon jar will have exactly 4 gallon of water. (5p – 4, 3p – 0) We are done !
91.86 %
52 votes

logic

Three Childrens' Ages

A deliveryman comes to a house to drop off a package. He asks the woman who lives there how many children she has. "Three," she says. "And I bet you can't guess their ages." "Ok, give me a hint," the deliveryman says. "Well, if you multiply their ages together, you get 36," she says. "And if you add their ages together, the sum is equal to our house number." The deliveryman looks at the house number nailed to the front of her house. "I need another hint," he says. The woman thinks for a moment. "My youngest son will have a lot to learn from his older brothers," she says. The deliveryman's eyes light up and he tells her the ages of her three children. What are their ages?
Their ages are 1, 6, and 6. We can figure this out as follows: Given that their ages multiply out to 36, the possible ages for the children are: 1, 1, 36 (sum = 38) 1, 2, 18 (sum = 21) 1, 3, 12 (sum = 16) 1, 4, 9 (sum = 14) 1, 6, 6 (sum = 13) 2, 2, 9 (sum = 13) 2, 3, 6 (sum = 11) 3, 3, 4 (sum = 10) When the woman tells the deliveryman that the children's ages add up to her street number, he still doesn't know their ages. The only way this could happen is that there is more than one possible way for the children's ages to add up to the number on the house (or else he would have known their ages when he looked at the house number). Looking back at the possible values for the children's ages, you can see that there is only one situation in which there are multiple possible values for the children's ages that add up to the same sum, and that is if their ages are either 1, 6, and 6 (sums up to 13), or 2, 2, and 9 (also sums up to 13). So these are now the only possible values for their ages. When the woman then tells him that her youngest son has two older brothers (who we can tell are clearly a number of years older), the only possible situation is that their ages are 1, 6, and 6.
91.22 %
48 votes

logicmathprobability

The same birthday

What is the least number of people that need to be in a room such that there is greater than a 50% chance that at least two of the people have the same birthday?
Only 23 people need to be in the room. Our first observation in solving this problem is the following: (the probability that at least 2 people have the same birthday + the probability that nobody has the same birthday) = 1.0 What this means is that there is a 100% chance that EITHER everybody in the room has a different birthday, OR at least two people in the room have the same birthday (and these probabilities don't add up to more than 1.0 because they cover mutually exclusive situations). With some simple re-arranging of the formula, we get: the probability that at least 2 people have the same birthday = (1.0 - the probability that nobody has the same birthday) So now if we can find the probability that nobody in the room has the same birthday, we just subtract this value from 1.0 and we'll have our answer. The probability that nobody in the room has the same birthday is fairly straightforward to calculate. We can think of this as a "selection without replacement" problem, where each person "selects" a birthday at random, and we then have to figure out the probability that no two people select the same birthday. The first selection has a 365/365 chance of being different than the other birthdays (since none have been selected yet). The next selection has a 364/365 chance of being different than the 1 birthday that has been selected so far. The next selection has a 363/365 chance of being different than the 2 birthdays that have been selected so far. These probabilities are multiplied together since each is conditional on the previous. So for example, the probability that nobody in a room of 3 people have the same birthday is (365/365 * 364/365 * 363/365) =~ 0.9918 More generally, if there are n people in a room, then the probability that nobody has the same birthday is (365/365 * 364/365 * ... * (365-n+2)/365 * (365-n+1)/365) We can plug in values for n. For n=22, we get that the probability that nobody has the same birthday is 0.524, and thus the probabilty that at least two people have the same birthday is (1.0 - 0.524) = 0.476 = 47.6%. Then for n=23, we get that the probability that nobody has the same birthday is 0.493, and thus the probabilty that at least two people have the same birthday is 1.0 - 0.493) = 0.507 = 50.7%. Thus, once we get to 23 people we have reached the 50% threshold.
91.22 %
48 votes

clean

Sphinx riddle

In classic mythology, there is the story of the Sphinx, a monster with the body of a lion and the upper part of a woman. The Sphinx lay crouched on the top of a rock along the highroad to the city of Thebes, and stopped all travellers passing by, proposing to them a riddle. Those who failed to answer the riddle correctly were killed. This is the riddle the Sphinx asked the travellers: "What animal walks on four legs in the morning, two legs during the day, and three legs in the evening?"
This is part of the story of Oedipus, who replied to the Sphinx, "Man, who in childhood creeps on hands and knees, in manhood walks erect, and in old age with the aid of a staff." Morning, day and night are representative of the stages of life. The Sphinx was so mortified at the solving of her riddle that she cast herself down from the rock and perished.
91.22 %
48 votes

logic

Four big houses

There are 4 big houses in my home town. They are made from these materials: red marbles, green marbles, white marbles and blue marbles. Mrs Jennifer's house is somewhere to the left of the green marbles one and the third one along is white marbles. Mrs Sharon owns a red marbles house and Mr Cruz does not live at either end, but lives somewhere to the right of the blue marbles house. Mr Danny lives in the fourth house, while the first house is not made from red marbles. Who lives where, and what is their house made from ?
From, left to right: #1 Mrs Jennifer - blue marbles #2 Mrs Sharon - red marbles #3 Mr Cruz - white marbles #4 Mr Danny - green marbles If we separate and label the clues, and label the houses #1, #2, #3, #4 from left to right we can see that: a. Mrs Jennifer's house is somewhere to the left of the green marbles one. b. The third one along is white marbles. c. Mrs Sharon owns a red marbles house d. Mr Cruz does not live at either end. e. Mr Cruz lives somewhere to the right of the blue marbles house. f. Mr Danny lives in the fourth house g. The first house is not made from red marbles. By (g) #1 isn't made from red marbles, and by (b) nor is #3. By (f) Mr Danny lives in #4 therefore by (c) #2 must be red marbles, and Mrs Sharon lives there. Therefore by (d) Mr Cruz must live in #3, which, by (b) is the white marbles house. By (a) #4 must be green marbles (otherwise Mrs Jennifer couldn't be to its left) and by (f) Mr Danny lives there. Which leaves Mrs Jennifer, living in #1, the blue marbles house.
90.86 %
46 votes

clean

Extraordinary event

Something very extraordinary happened on the 6th of May, 1978 at thirty-four minutes past twelve a.m. What was it?
At that moment, the time and day could be written as 12:34, 5/6/78.
90.67 %
45 votes

logicmathshort

Magic number

Ramanujan discovered 1729 as a magic number. Why 1729 is a magic number ?
It can be expressed as the sum of the cubes of two different sets of numbers. 10^3 + 9^3 = 1729 and 12^3 + 1^3 = 1729
90.47 %
44 votes

1234
MORE RIDDLES >
Page 1 of 4.