## Sequence of numbers

Finish the sequence:
7 8 5 5 3 4 4 ?

6 - the number of letters in the month august; (January has 7 letters, February has 8 etc.)

the answer

Finish the sequence:
7 8 5 5 3 4 4 ?

6 - the number of letters in the month august; (January has 7 letters, February has 8 etc.)

the answer

What has an eye but can not see?

A needle.

the answer

This old one runs forever, but never moves at all. He has not lungs nor throat, but still a mighty roaring call. What is it?

A waterfall.

the answer

The owner of a banana plantation has a camel. He wants to transport his 3000 bananas to the market, which is located after the desert. The distance between his banana plantation and the market is about 1000 kilometer. So he decided to take his camel to carry the bananas. The camel can carry at the maximum of 1000 bananas at a time, and it eats one banana for every kilometer it travels.
What is the most bananas you can bring over to your destination?

First of all, the brute-force approach does not work. If the Camel starts by picking up the 1000 bananas and try to reach point B, then he will eat up all the 1000 bananas on the way and there will be no bananas left for him to return to point A.
So we have to take an approach that the Camel drops the bananas in between and then returns to point A to pick up bananas again.
Since there are 3000 bananas and the Camel can only carry 1000 bananas, he will have to make 3 trips to carry them all to any point in between.
When bananas are reduced to 2000 then the Camel can shift them to another point in 2 trips and when the number of bananas left are <= 1000, then he should not return and only move forward.
In the first part, P1, to shift the bananas by 1Km, the Camel will have to
Move forward with 1000 bananas – Will eat up 1 banana in the way forward
Leave 998 banana after 1 km and return with 1 banana – will eat up 1 banana in the way back
Pick up the next 1000 bananas and move forward – Will eat up 1 banana in the way forward
Leave 998 banana after 1 km and return with 1 banana – will eat up 1 banana in the way back
Will carry the last 1000 bananas from point a and move forward – will eat up 1 banana
Note: After point 5 the Camel does not need to return to point A again.
So to shift 3000 bananas by 1km, the Camel will eat up 5 bananas.
After moving to 200 km the Camel would have eaten up 1000 bananas and is now left with 2000 bananas.
Now in the Part P2, the Camel needs to do the following to shift the Bananas by 1km.
Move forward with 1000 bananas – Will eat up 1 banana in the way forward
Leave 998 banana after 1 km and return with 1 banana – will eat up this 1 banana in the way back
Pick up the next 1000 bananas and move forward – Will eat up 1 banana in the way forward
Note: After point 3 the Camel does not need to return to the starting point of P2.
So to shift 2000 bananas by 1km, the Camel will eat up 3 bananas.
After moving to 333 km the camel would have eaten up 1000 bananas and is now left with the last 1000 bananas.
The Camel will actually be able to cover 333.33 km, I have ignored the decimal part because it will not make a difference in this example.
Hence the length of part P2 is 333 Km.
Now, for the last part, P3, the Camel only has to move forward. He has already covered 533 (200+333) out of 1000 km in Parts P1 & P2. Now he has to cover only 467 km and he has 1000 bananas.
He will eat up 467 bananas on the way forward, and at point B the Camel will be left with only 533 Bananas.

the answer

How to measure exactly 4 gallon of water from 3 gallon and 5 gallon jars, given, you have unlimited water supply from a running tap.

Step 1. Fill 3 gallon jar with water. ( 5p – 0, 3p – 3)
Step 2. Pour all its water into 5 gallon jar. (5p – 3, 3p – 0)
Step 3. Fill 3 gallon jar again. ( 5p – 3, 3p – 3)
Step 4. Pour its water into 5 gallon jar untill it is full. Now you will have exactly 1 gallon water remaining in 3 gallon jar. (5p – 5, 3p – 1)
Step 5. Empty 5 gallon jar, pour 1 gallon water from 3 gallon jar into it. Now 5 gallon jar has exactly 1 gallon of water. (5p – 1, 3p – 0)
Step 6. Fill 3 gallon jar again and pour all its water into 5 gallon jar, thus 5 gallon jar will have exactly 4 gallon of water. (5p – 4, 3p – 0)
We are done !

the answer

This is an unusual paragraph. I’m curious as to just how quickly you can find out what is so unusual about it. It looks so ordinary and plain that you would think nothing was wrong with it. In fact, nothing is wrong with it! It is highly unusual though. Study it and think about it, but you still may not find anything odd. But if you work at it a bit, you might find out. Try to do so without any coaching.

The letter "e", which is the most common letter in the English language, does not appear once in the long paragraph.

the answer

In a small town in the United States, a teenage boy asked his parents if he could go to a friend's party. His parents agreed, provided that he was back before sunrise. He left the house that evening clean-shaven and when he returned just before the following sunrise his parents were amazed to see that he had a fully grown beard. What happened?

The small town was Barrow in Alaska, the northernmost town in the United States. When the sun sets there in the middle of November, it does not rise again for 65 days. That allowed plenty of time for the boy to grow a beard before the next sunrise.

the answer

What is the least number of people that need to be in a room such that there is greater than a 50% chance that at least two of the people have the same birthday?

Only 23 people need to be in the room.
Our first observation in solving this problem is the following:
(the probability that at least 2 people have the same birthday + the probability that nobody has the same birthday) = 1.0
What this means is that there is a 100% chance that EITHER everybody in the room has a different birthday, OR at least two people in the room have the same birthday (and these probabilities don't add up to more than 1.0 because they cover mutually exclusive situations).
With some simple re-arranging of the formula, we get:
the probability that at least 2 people have the same birthday = (1.0 - the probability that nobody has the same birthday)
So now if we can find the probability that nobody in the room has the same birthday, we just subtract this value from 1.0 and we'll have our answer.
The probability that nobody in the room has the same birthday is fairly straightforward to calculate. We can think of this as a "selection without replacement" problem, where each person "selects" a birthday at random, and we then have to figure out the probability that no two people select the same birthday. The first selection has a 365/365 chance of being different than the other birthdays (since none have been selected yet). The next selection has a 364/365 chance of being different than the 1 birthday that has been selected so far. The next selection has a 363/365 chance of being different than the 2 birthdays that have been selected so far.
These probabilities are multiplied together since each is conditional on the previous. So for example, the probability that nobody in a room of 3 people have the same birthday is (365/365 * 364/365 * 363/365) =~ 0.9918
More generally, if there are n people in a room, then the probability that nobody has the same birthday is (365/365 * 364/365 * ... * (365-n+2)/365 * (365-n+1)/365)
We can plug in values for n. For n=22, we get that the probability that nobody has the same birthday is 0.524, and thus the probabilty that at least two people have the same birthday is (1.0 - 0.524) = 0.476 = 47.6%.
Then for n=23, we get that the probability that nobody has the same birthday is 0.493, and thus the probabilty that at least two people have the same birthday is 1.0 - 0.493) = 0.507 = 50.7%. Thus, once we get to 23 people we have reached the 50% threshold.

the answer

There are 5 pirates in a ship. Pirates have hierarchy C1, C2, C3, C4 and C5.C1 designation is the highest and C5 is the lowest. These pirates have three characteristics : a. Every pirate is so greedy that he can even take lives to make more money. b. Every pirate desperately wants to stay alive. c. They are all very intelligent.There are total 100 gold coins on the ship. The person with the highest designation on the deck is expected to make the distribution. If the majority on the deck does not agree to the distribution proposed, the highest designation pirate will be thrown out of the ship (or simply killed). The first priority of the pirates is to stay alive and second to maximize the gold they get. Pirate 5 devises a plan which he knows will be accepted for sure and will maximize his gold. What is his plan?

To understand the answer,we need to reduce this problem to only 2 pirates. So what happens if there are only 2 pirates. Pirate 2 can easily propose that he gets all the 100 gold coins. Since he constitutes 50% of the pirates, the proposal has to be accepted leaving Pirate 1 with nothing.
Now let’s look at 3 pirates situation, Pirate 3 knows that if his proposal does not get accepted, then pirate 2 will get all the gold and pirate 1 will get nothing. So he decides to bribe pirate 1 with one gold coin. Pirate 1 knows that one gold coin is better than nothing so he has to back pirate 3. Pirate 3 proposes {pirate 1, pirate 2, pirate 3} {1, 0, 99}. Since pirate 1 and 3 will vote for it, it will be accepted.
If there are 4 pirates, pirate 4 needs to get one more pirate to vote for his proposal. Pirate 4 realizes that if he dies, pirate 2 will get nothing (according to the proposal with 3 pirates) so he can easily bribe pirate 2 with one gold coin to get his vote. So the distribution will be {0, 1, 0, 99}.
Smart right? Now can you figure out the distribution with 5 pirates? Let’s see. Pirate 5 needs 2 votes and he knows that if he dies, pirate 1 and 3 will get nothing. He can easily bribe pirates 1 and 3 with one gold coin each to get their vote. In the end, he proposes {1, 0, 1, 0, 98}. This proposal will get accepted and provide the maximum amount of gold to pirate 5.

the answer

A deliveryman comes to a house to drop off a package. He asks the woman who lives there how many children she has.
"Three," she says. "And I bet you can't guess their ages."
"Ok, give me a hint," the deliveryman says.
"Well, if you multiply their ages together, you get 36," she says. "And if you add their ages together, the sum is equal to our house number."
The deliveryman looks at the house number nailed to the front of her house. "I need another hint," he says.
The woman thinks for a moment. "My youngest son will have a lot to learn from his older brothers," she says.
The deliveryman's eyes light up and he tells her the ages of her three children. What are their ages?

Their ages are 1, 6, and 6. We can figure this out as follows:
Given that their ages multiply out to 36, the possible ages for the children are:
1, 1, 36 (sum = 38)
1, 2, 18 (sum = 21)
1, 3, 12 (sum = 16)
1, 4, 9 (sum = 14)
1, 6, 6 (sum = 13)
2, 2, 9 (sum = 13)
2, 3, 6 (sum = 11)
3, 3, 4 (sum = 10)
When the woman tells the deliveryman that the children's ages add up to her street number, he still doesn't know their ages. The only way this could happen is that there is more than one possible way for the children's ages to add up to the number on the house (or else he would have known their ages when he looked at the house number). Looking back at the possible values for the children's ages, you can see that there is only one situation in which there are multiple possible values for the children's ages that add up to the same sum, and that is if their ages are either 1, 6, and 6 (sums up to 13), or 2, 2, and 9 (also sums up to 13). So these are now the only possible values for their ages.
When the woman then tells him that her youngest son has two older brothers (who we can tell are clearly a number of years older), the only possible situation is that their ages are 1, 6, and 6.

the answer

© 2018 SOLVE or DIE

Design by Talmer.cz