Riddle #563


3 parachutes

The Pope, Beyonce, Barack Obama, and Bill Gates are on the same plane. There are only 3 parachutes left for the 4 of them. Obama says: "As the President, I think I should have the right to have a parachute, because I rule millions of people in the greatest nation of all." Beyonce says: "As one of the greatest singers of all-time, I think I should deserve to be safe. I bring tears and laughter to millions of people, and I'm an important contributor to pop music." Bill Gates says: "As one of the richest successful company owners, I think I should live because I'm on top of the economics cycle, creating jobs and incomes for millions of people. I am a wealthy and intelligent man." Finally, the Pope says: "I'm an old, religious man. I lived a life that's full, I helped millions of people find their way through God, I'm ready to let go of a parachute and to face my fate." Which one of them will abandon the parachute and die?
Did I ever mention that the plane was crashing? No one's gonna die.
94.59 %
47 votes

Similar riddles

See also best riddles or new riddles.


Baggy Suit

A crime has been committed at Freemont Street. The main suspect is a man named Sean Baker. It was said that a man had been walking along the pathway when he was suddenly shot in the stomach. The suspect had brown hair, blue eyes and wore a baggy Armani suit just like Sean Baker's. Sean was asked to tell the story right from the beginning. "Well," said Sean, "I was just hanging around the park when I saw this man walking along the pathway. Suddenly, a guy came up from behind him and shot him! I ran home as fast as I could. The policemen asked him to give a description of the murderer. "He had a red mustache, red hair and a baggy Armani suit on." "I think this man is telling a lie," said one of the policemen. How did he know?
How can the murderer shoot him in the stomach if he came up behind the man?
93.05 %
36 votes


The Missing Servant

A king has 100 identical servants, each with a different rank between 1 and 100. At the end of each day, each servant comes into the king's quarters, one-by-one, in a random order, and announces his rank to let the king know that he is done working for the day. For example, servant 14 comes in and says "Servant 14, reporting in." One day, the king's aide comes in and tells the king that one of the servants is missing, though he isn't sure which one. Before the other servants begin reporting in for the night, the king asks for a piece of paper to write on to help him figure out which servant is missing. Unfortunately, all that's available is a very small piece that can only hold one number at a time. The king is free to erase what he writes and write something new as many times as he likes, but he can only have one number written down at a time. The king's memory is bad and he won't be able to remember all the exact numbers as the servants report in, so he must use the paper to help him. How can he use the paper such that once the final servant has reported in, he'll know exactly which servant is missing?
When the first servant comes in, the king should write down his number. For each other servant that reports in, the king should add that servant's number to the current number written on the paper, and then write this new number on the paper. Once the final servant has reported in, the number on the paper should equal (1 + 2 + 3 + ... + 99 + 100) - MissingServantsNumber Since (1 + 2 + 3 + ... + 99 + 100) = 5050, we can rephrase this to say that the number on the paper should equal 5050 - MissingServantsNumber So to figure out the missing servant's number, the king simply needs to subtract the number written on his paper from 5050: MissingServantsNumber = 5050 - NumberWrittenOnThePaper
93.98 %
42 votes


Smartest kid in the world

Jake and his friend Paco had very famous challenge sessions at their school. One would suggest something they could do, and the other would prove it wrong somehow. One day, Jake surprised Paco by stating: "I can answer any question in the world." Sure that he would win the challenge, Paco accepted the task of proving it wrong. He wrote up a test full of impossible questions. After a while, Jake returned the test. Paco unbelievably lost the challenge and told Jake he could indeed answer any question. How did Jake win?
For all the impossible questions, Jake simply wrote "I don't know".
93.84 %
41 votes


Six rungs

A boat has a ladder that has six rungs, each rung is one foot apart. The bottom rung is one foot from the water. The tide rises at 12 inches every 15 minutes. High tide peaks in one hour. When the tide is at it's highest, how many rungs are under water?
None, the boat rises with the tide.
93.55 %
39 votes



It was a very large truck. The truck need to cross a 3 mile long bridge. Unfortunately, the bridge can only hold the weight of 12000 lbs. Even a single pound extra, the bridge would collapse. However the weight of the truck is exactly 12000 lbs. The driver carefully drove and crossed almost 70 percent distance of the bridge. He stopped to get a small break. Suddenly, a bird landed on the truck. Did the bridge collapse? Justify your answers with explanation!
No. The bridge doesn’t collapse. The truck almost crossed 70 percent of total distance. Equivalent diesel would have been lost. So the extra weight of the bridge doesn’t add any extra load to the bridge.
93.84 %
41 votes


Tiling Without Corners

You can easily "tile" an 8x8 chessboard with 32 2x1 tiles, meaning that you can place these 32 tiles on the board and cover every square. But if you take away two opposite corners from the chessboard, it becomes impossible to tile this new 62-square board. Can you explain why tiling this board isn't possible?
Color in the chessboard, alternating with red and blue tiles. Then color all of your tiles half red and half blue. Whenever you place a tile down, you can always make it so that the red part of the tile is on a red square and the blue part of the tile is on the blue square. Since you'll need to place 31 tiles on the board (to cover the 62 squares), you would have to be able to cover 31 red squares and 31 blue squares. But when you took away the two corners, you can see that you are taking away two red spaces, leaving 30 red squares and 32 blue squares. There is no way to cover 30 red squares and 32 blue squares with the 31 tiles, since these tiles can only cover 31 red squares and 31 blue squares, and thus, tiling this board is not possible.
93.84 %
41 votes


Box full of marbles

There is a box full of marbles, all but two are blue, all but two are green, and all but two are red. How many marbles are in the box ?
There are 3 marbles (1 blue, 1 green, and 1 red).
93.05 %
36 votes


The Circular Lake

A swan sits at the center of a perfectly circular lake. At an edge of the lake stands a ravenous monster waiting to devour the swan. The monster can not enter the water, but it will run around the circumference of the lake to try to catch the swan as soon as it reaches the shore. The monster moves at 4 times the speed of the swan, and it will always move in the direction along the shore that brings it closer to the swan the quickest. Both the swan and the the monster can change directions in an instant. The swan knows that if it can reach the lake's shore without the monster right on top of it, it can instantly escape into the surrounding forest. How can the swan succesfully escape?
Assume the radius of the lake is R feet. So the circumference of the lake is (2*pi*R). If the swan swims R/4 feet, (or, put another way, 0.25R feet) straight away from the center of the lake, and then begins swimming in a circle around the center, then it will be able to swim around this circle in the exact same amount of time as the monster will be able to run around the lake's shore (since this inner circle's circumference is 2*pi*(R/4), which is exactly 4 times shorter than the shore's circumference). From this point, the swan can move a millimeter inward toward the lake's center, and begin swimming around the center in a circle from this distance. It is now going around a very slightly smaller circle than it was a moment ago, and thus will be able to swim around this circle FASTER than the monster can run around the shore. The swan can keep swimming around this way, pulling further away each second, until finally it is on the opposite side of its inner circle from where the monster is on the shore. At this point, the swan aims directly toward the closest shore and begins swimming that way. At this point, the swan has to swim [0.75R feet + 1 millimeter] to get to shore. Meanwhile, the monster will have to run R*pi feet (half the circumference of the lake) to get to where the swan is headed. The monster runs four times as fast as the swan, but you can see that it has more than four times as far to run: [0.75R feet + 1 millimeter] * 4 < R*pi [This math could actually be incorrect if R were very very small, but in that case we could just say the swan swam inward even less than a millimeter, and make the math work out correctly.] Because the swan has less than a fourth of the distance to travel as the monster, it will reach the shore before the monster reaches where it is and successfully escape.
93.70 %
40 votes