cleanlogicmysteryshortA man owned a casino and invited some friends.
It was a dark stormy night, and they all placed their money on the table right before the lights went out.
When the lights came back on, the money was gone.
The owner put a rooster in an old rusty tea kettle.
He told everyone to get in line and touch the kettle after he turned the lights off, and the rooster will crow when the robber touched it.
After everyone touched it, the rooster didn't crow, so the man told everyone to hold out their hands.
After examining all the hands, he pointed out who the robber was.
How did he know who stole the money?

Because the tea kettle was rusty, whoever touched it would have rust on their hands. The robber didn't touch the kettle, therefore he was the only one whose hands weren't rusty.

logicOn the game show et´s Make a Deal, Monty Hall shows you three doors. Behind one of the doors is a new car, the other two hide goats. You choose one door, perhaps #1. Now Monty shows you what´s behind door #2 and it´s a goat.He gives you the chance to stay with original pick or select door #3. What do you do?

You should always abandon your original choice in favor of the remaining door (#3). When you make your first choice the chance of winning is 1 in 3 or 33%. When you switch doors, you turn a 2 in 3 chance of losing in the first round into a 2 in 3 chance of winning in the second round.

logicmathEvery day, Jack arrives at the train station from work at 5 pm. His wife leaves home in her car to meet him there at exactly 5 pm, and drives him home. One day, Jack gets to the station an hour early, and starts walking home, until his wife meets him on the road. They get home 30 minutes earlier than usual. How long was he walking? Distances are unspecified. Speeds are unspecified, but constant. Give a number which represents the answer in minutes.

The best way to think about this problem is to consider it from the perspective of the wife. Her round trip was decreased by 30 minutes, which means each leg of her trip was decreased by 15 minutes. Jack must have been walking for 45 minutes.

logicshortwhat am IOnly one color, but not one size. Stuck at the bottom, yet I easily fly. Present in sun, but not in rain. Doing no harm, and feeling no pain. What Am I?

Shadow.

logicA man told his son that he would give him $1000 if he could accomplish the following task. The father gave his son ten envelopes and a thousand dollars, all in one dollar bills. He told his son, "Place the money in the envelopes in such a manner that no matter what number of dollars I ask for, you can give me one or more of the envelopes, containing the exact amount I asked for without having to open any of the envelopes. If you can do this, you will keep the $1000."
When the father asked for a sum of money, the son was able to give him envelopes containing the exact amount of money asked for. How did the son distribute the money among the ten envelopes?

The contents or the ten envelopes (in dollar bills) hould be as follows: $1, 2, 4, 8, 16, 32, 64, 128, 256, 489. The first nine numbers are in geometrical progression, and their sum, deducted from 1,000, gives the contents of the tenth envelope.

logicYou die and the devil says he'll let you go to heaven if you beat him in a game. The devil sits you down at a perfectly round table. He gives himself and you an infinite pile of quarters. He says, "OK, we'll take turns putting one quarter down, no overlapping allowed, and the quarters must rest flat on the table surface. The first guy who can't put a quarter down loses." You guys are about to start playing, and the devil says that he'll go first. However, at this point you immediately interject, and ask if you can go first instead. You make this interjection because you are very smart and can place quarters perfectly, and you know that if you go first, you can guarantee victory. Explain how you can guarantee victory.

You place a quarter right in the center of the table. After that, whenever the devil places a quarter on the table, mimic his placement on the opposite side of the table.. If he has a place to place a quarter, so will you. The devil will run out of places to put a quarter before you do.

logicshort The day before yesterday Cindy was 17. Next year she will be 20. How can this be?

The statement was made on January 1. Cindy's birthday is on December 31. She was 17 the day before yesterday (Dec 30). She was 18 yesterday. She will be 19 this year (Dec 31) and 20 next year.

logicmath In the land of Brainopia, there are three races of people: Mikkos, who tell the truth all the time, Kikkos, who always tell lies, and Zikkos, who tell alternate false and true statements, in which the order is not known (i.e. true, false, true or false, true, false). When interviewing three Brainopians, a foreigner received the following statements:
Person 1:
I am a Mikko.
Person 2:
I am a Kikko.
Person 3:
a. They are both lying.
b. I am a Zikko.
Can you help the very confused foreigner determine who is who, assuming each person represents a different race?

Person 1 is a Miko.
Person 2 is a Ziko.
Person 3 is a Kikko.

animalcleanfunnyshortWhat do polar bears eat for lunch?

(Ice berg-ers!)

logicmathYou can easily "tile" an 8x8 chessboard with 32 2x1 tiles, meaning that you can place these 32 tiles on the board and cover every square.
But if you take away two opposite corners from the chessboard, it becomes impossible to tile this new 62-square board.
Can you explain why tiling this board isn't possible?

Color in the chessboard, alternating with red and blue tiles. Then color all of your tiles half red and half blue. Whenever you place a tile down, you can always make it so that the red part of the tile is on a red square and the blue part of the tile is on the blue square.
Since you'll need to place 31 tiles on the board (to cover the 62 squares), you would have to be able to cover 31 red squares and 31 blue squares. But when you took away the two corners, you can see that you are taking away two red spaces, leaving 30 red squares and 32 blue squares. There is no way to cover 30 red squares and 32 blue squares with the 31 tiles, since these tiles can only cover 31 red squares and 31 blue squares, and thus, tiling this board is not possible.