There are 3 switches outside of a room, all in the 'off' setting. One of them controls a lightbulb inside the room, the other two do nothing.
You cannot see into the room, and once you open the door to the room, you cannot flip any of the switches any more.
Before going into the room, how would you flip the switches in order to be able to tell which switch controls the light bulb?

Flip the first switch and keep it flipped for five minutes. Then unflip it, and flip the second switch. Go into the room. If the lightbulb is off but warm, the first switch controls it. If the light is on, the second switch controls it. If the light is off and cool, the third switch controls it.

Your friend pulls out a perfectly circular table and a sack of quarters, and proposes a game.
"We'll take turns putting a quarter on the table," he says. "Each quarter must lay flat on the table, and cannot sit on top of any other quarters. The last person to successfully put a quarter on the table wins."
He gives you the choice to go first or second. What should you do, and what should your strategy be to win?

You should go first, and put a quarter at the exact center of the table.
Then, each time your opponent places a quarter down, you should place your next quarter in the symmetric position on the opposite side of the table.
This will ensure that you always have a place to set down our quarter, and eventually your oppponent will run out of space.

You're standing in front of a room with one lightbulb inside of it. You cannot see if it is on or off. Outside the room, there are 3 switches in the off positions. You may turn the switches any way you want to. You stop turning the switches, enter the room and know which switch controls the lightbulb. How?

You turn 2 switches "on" and leave 1 switch "off" and wait about a minute. Then enter the room, but just before you enter, turn one switch from "on" to "off". Once in the room, feel the lightbulb - if it is warm, but off, it has to be the last switch you turned off. If it is on, it has to be the switch left on. If it is cold and is off, it has to be the switch you left in the off position.

Four people come to an old bridge in the middle of the night. The bridge is rickety and can only support 2 people at a time. The people have one flashlight, which needs to be held by any group crossing the bridge because of how dark it is.
Each person can cross the bridge at a different rate: one person takes 1 minute, one person takes 2 minutes, one takes 5 minutes, and the one person takes 10 minutes. If two people are crossing the bridge together, it will take both of them the time that it takes the slower person to cross.
Unfortunately, there are only 17 minutes worth of batteries left in the flashlight. How can the four travellers cross the bridge before time runs out?

The two keys here are:
You want the two slowest people to cross together to consolidate their slow crossing times.
You want to make sure the faster people are set up in order to bring the flashlight back quickly after the slow people cross.
So the order is:
1-minute and 2-minute cross (2 minute elapsed)
1-minute comes back (3 minutes elapsed)
5-minute and 10-minute cross (13 minutes elapsed)
2-minute comes back (15 minutes elapsed)
1-minute and 2-minute cross (17 minutes elapsed)

On the game show et´s Make a Deal, Monty Hall shows you three doors. Behind one of the doors is a new car, the other two hide goats. You choose one door, perhaps #1. Now Monty shows you what´s behind door #2 and it´s a goat.He gives you the chance to stay with original pick or select door #3. What do you do?

You should always abandon your original choice in favor of the remaining door (#3). When you make your first choice the chance of winning is 1 in 3 or 33%. When you switch doors, you turn a 2 in 3 chance of losing in the first round into a 2 in 3 chance of winning in the second round.
Search: Monty Hall problem

A duke was hunting in the forest with his men-at-arms and servants when he came across a tree.
Upon it, archery targets were painted and smack in the middle of each was an arrow.
"Who is this incredibly fine archer?" cried the duke. "I must find him!"
After continuing through the forest for a few miles he came across a small boy carrying a bow and arrow.
Eventually the boy admitted that it was he who shot the arrows plumb in the center of all the targets.
"You didn't just walk up to the targets and hammer the arrows into the middle, did you?" asked the duke worriedly.
"No my lord. I shot them from a hundred paces. I swear it by all that I hold holy."
"That is truly astonishing," said the duke. "I hereby admit you into my service."
The boy thanked him profusely.
"But I must ask one favor in return," the duke continued.
"You must tell me how you came to be such an outstanding shot."
How'd he get to be such a good shot?

The boy shot the arrow, then painted the circle around it.

A man comes to a small hotel where he wishes to stay for 7 nights. He reaches into his pockets and realizes that he has no money, and the only item he has to offer is a gold chain, which consists of 7 rings connected in a row (not in a loop).
The hotel proprietor tells the man that it will cost 1 ring per night, which will add up to all 7 rings for the 7 nights.
"Ok," the man says. "I'll give you all 7 rings right now to pre-pay for my stay."
"No," the proprietor says. "I don't like to be in other people's debt, so I cannot accept all the rings up front."
"Alright," the man responds. "I'll wait until after the seventh night, and then give you all of the rings."
"No," the proprietor says again. "I don't like to ever be owed anything. You'll need to make sure you've paid me the exact correct amount after each night."
The man thinks for a minute, and then says "I'll just cut each of my rings off of the chain, and then give you one each night."
"I do not want cut rings," the proprietor says. "However, I'm willing to let you cut one of the rings if you must."
The man thinks for a few minutes and then figures out a way to abide by the proprietor's rules and stay the 7 nights in the hotel. What is his plan?

The man cuts the ring that is third away from the end of the chain. This leaves him with 3 smaller chains of length 1, 2, and 4. Then, he gives rings to the proprietor as follows:
After night 1, give the proprietor the single ring
After night 2, take the single ring back and give the proprietor the 2-ring chain
After night 3, give the proprietor the single ring, totalling 3 rings with the proprietor
After night 4, take back the single ring and the 2-ring chain, and give the proprietor the 4-ring chain
After night 5, give the proprietor the single ring, totalling 5 rings with the proprietor
After night 6, take back the single ring and give the proprietor the 2-ring chain, totalling 6 rings with the proprietor
After night 7, give the proprietor the single ring, totalling 7 rings with the proprietor

Last week, the local Primary school was visited by the Government School Inspector who was there to check that teachers were performing well in their respective classes. He was very impressed with one particular teacher. The Inspector noticed that each time the class teacher asked a question, every child in the class put up their hands enthusiastically to answer it. More surprisingly, whilst the teacher chose a different child to answer the questions each time, the answers were always correct.
Why would this be?

The children were instructed to ALL raise their hands whenever a question was asked. It did not matter whether they knew the answer or not. If they did not know the answer, however, they would raise their LEFT hand. If they knew the answer, they would raise their RIGHT hand. The class teacher would choose a different child each time, but always the ones who had their RIGHT hand raised.

How to measure exactly 4 gallon of water from 3 gallon and 5 gallon jars, given, you have unlimited water supply from a running tap.

Step 1. Fill 3 gallon jar with water. ( 5p – 0, 3p – 3)
Step 2. Pour all its water into 5 gallon jar. (5p – 3, 3p – 0)
Step 3. Fill 3 gallon jar again. ( 5p – 3, 3p – 3)
Step 4. Pour its water into 5 gallon jar untill it is full. Now you will have exactly 1 gallon water remaining in 3 gallon jar. (5p – 5, 3p – 1)
Step 5. Empty 5 gallon jar, pour 1 gallon water from 3 gallon jar into it. Now 5 gallon jar has exactly 1 gallon of water. (5p – 1, 3p – 0)
Step 6. Fill 3 gallon jar again and pour all its water into 5 gallon jar, thus 5 gallon jar will have exactly 4 gallon of water. (5p – 4, 3p – 0)