Riddle #985

logic

Government School Inspector

Last week, the local Primary school was visited by the Government School Inspector who was there to check that teachers were performing well in their respective classes. He was very impressed with one particular teacher. The Inspector noticed that each time the class teacher asked a question, every child in the class put up their hands enthusiastically to answer it. More surprisingly, whilst the teacher chose a different child to answer the questions each time, the answers were always correct. Why would this be?
The children were instructed to ALL raise their hands whenever a question was asked. It did not matter whether they knew the answer or not. If they did not know the answer, however, they would raise their LEFT hand. If they knew the answer, they would raise their RIGHT hand. The class teacher would choose a different child each time, but always the ones who had their RIGHT hand raised.
93.84 %
41 votes

Similar riddles

See also best riddles or new riddles.

logicmathprobability

The same birthday

What is the least number of people that need to be in a room such that there is greater than a 50% chance that at least two of the people have the same birthday?
Only 23 people need to be in the room. Our first observation in solving this problem is the following: (the probability that at least 2 people have the same birthday + the probability that nobody has the same birthday) = 1.0 What this means is that there is a 100% chance that EITHER everybody in the room has a different birthday, OR at least two people in the room have the same birthday (and these probabilities don't add up to more than 1.0 because they cover mutually exclusive situations). With some simple re-arranging of the formula, we get: the probability that at least 2 people have the same birthday = (1.0 - the probability that nobody has the same birthday) So now if we can find the probability that nobody in the room has the same birthday, we just subtract this value from 1.0 and we'll have our answer. The probability that nobody in the room has the same birthday is fairly straightforward to calculate. We can think of this as a "selection without replacement" problem, where each person "selects" a birthday at random, and we then have to figure out the probability that no two people select the same birthday. The first selection has a 365/365 chance of being different than the other birthdays (since none have been selected yet). The next selection has a 364/365 chance of being different than the 1 birthday that has been selected so far. The next selection has a 363/365 chance of being different than the 2 birthdays that have been selected so far. These probabilities are multiplied together since each is conditional on the previous. So for example, the probability that nobody in a room of 3 people have the same birthday is (365/365 * 364/365 * 363/365) =~ 0.9918 More generally, if there are n people in a room, then the probability that nobody has the same birthday is (365/365 * 364/365 * ... * (365-n+2)/365 * (365-n+1)/365) We can plug in values for n. For n=22, we get that the probability that nobody has the same birthday is 0.524, and thus the probabilty that at least two people have the same birthday is (1.0 - 0.524) = 0.476 = 47.6%. Then for n=23, we get that the probability that nobody has the same birthday is 0.493, and thus the probabilty that at least two people have the same birthday is 1.0 - 0.493) = 0.507 = 50.7%. Thus, once we get to 23 people we have reached the 50% threshold.
91.22 %
48 votes

logicprobability

Russian roulette choice

Your enemy challenges you to play Russian Roulette with a 6-cylinder pistol (meaning it has room for 6 bullets). He puts 2 bullets into the gun in consecutive slots, and leaves the next four slots blank. He spins the barrel and hands you the gun. You point the gun at yourself and pull the trigger. It doesn't go off. Your enemy tells you that you need to pull the trigger one more time, and that you can choose to either spin the barrel at random, or not, before pulling the trigger again. Spinning the barrel will position the barrel in a random position. Assuming you'd like to live, should you spin the barrel or not before pulling the trigger again?
You are better off shooting again without spinning the barrel. Given that the gun didn't fire the first time, it was pointing to one of the four empty slots. Because your enemy spun the cylinder randomly, it would have been pointing to any of these empty slots with equal probability. Three of these slots would not fire again after an additional trigger-pull, and one of them would. Thus, by not spinning the barrel, there is a 1/4 chance that pulling the trigger again would fire the gun. Alternatively, if you spin the barrel, it will point to each of the 6 slots with equal probability. Because 2 of these 6 slots have bullets in them, there would be a 2/6 = 1/3 chance that the gun would fire after spinning the barrel. Thus, you are better off not spinning the barrel.
93.84 %
41 votes

logic

Four big houses

There are 4 big houses in my home town. They are made from these materials: red marbles, green marbles, white marbles and blue marbles. Mrs Jennifer's house is somewhere to the left of the green marbles one and the third one along is white marbles. Mrs Sharon owns a red marbles house and Mr Cruz does not live at either end, but lives somewhere to the right of the blue marbles house. Mr Danny lives in the fourth house, while the first house is not made from red marbles. Who lives where, and what is their house made from ?
From, left to right: #1 Mrs Jennifer - blue marbles #2 Mrs Sharon - red marbles #3 Mr Cruz - white marbles #4 Mr Danny - green marbles If we separate and label the clues, and label the houses #1, #2, #3, #4 from left to right we can see that: a. Mrs Jennifer's house is somewhere to the left of the green marbles one. b. The third one along is white marbles. c. Mrs Sharon owns a red marbles house d. Mr Cruz does not live at either end. e. Mr Cruz lives somewhere to the right of the blue marbles house. f. Mr Danny lives in the fourth house g. The first house is not made from red marbles. By (g) #1 isn't made from red marbles, and by (b) nor is #3. By (f) Mr Danny lives in #4 therefore by (c) #2 must be red marbles, and Mrs Sharon lives there. Therefore by (d) Mr Cruz must live in #3, which, by (b) is the white marbles house. By (a) #4 must be green marbles (otherwise Mrs Jennifer couldn't be to its left) and by (f) Mr Danny lives there. Which leaves Mrs Jennifer, living in #1, the blue marbles house.
94.24 %
44 votes

logic

Past the Bridge Guard

A guard is stationed at the entrance to a bridge. He is tasked to shoot anyone who tries to cross to the other side of the bridge, and to turn away anyone who comes in from the opposite side of the bridge. You are on his side of the bridge and want to escape to the other side. Because the bridge is old and rickety, anyone who tries to cross it does so at a constant speed, and it always takes exactly 10 minutes to cross. The guard comes out of his post every 6 minutes and looks down the bridge for any people trying to leave, and at all other times he sits in his post and snoozes. You know you can sneak past him when he's sleeping, but the problem is that you won't be able to make it all the way to the other side of the bridge before he sees you (since he comes out every 6 minutes, but it takes 10 minutes to cross). One day a brilliant idea comes to you, and soon you've successfully crossed to the other side of the bridge without being shot. How did you do it?
Right after the guard goes back to his post after checking the bridge, you sneak by and make your way down the bridge. After a little bit less than 6 minutes, you turn around and start walking back toward the guard. He will come out and see you, and assume that you are a visitor coming from the other side of the bridge, since you're only about 4 minutes from the end of the other side of the bridge. He will go back into his post since he doesn't plan to turn you away until you reach him, and then you turn back around and make your way the rest of the way to the other side of the bridge.
94.11 %
43 votes

logicmystery

A mysterious death

Dave and Brad, two popular politicians, met at a club to discuss the overthrow of their party leader. They each ordered a vodka on the rocks. Brad downed his and ordered another. He then drank his second in a gulp and decided to wait before he ordered a third. Meanwhile, Dave, who was sipping his drink, suddenly fell forward dead. Both men were setup for an assassination. Why did Dave die and Brad live?
Both Dave and Brad were given drinks with poisoned ice cubes. Brad drank his drinks so quickly that the ice didn't have time to melt and release the poison.
87.46 %
45 votes

logic

Vanilla ice cream

This teaser is based on a weird but true story from a few years ago. A complaint was received by the president of a major car company: "This is the fourth time I have written you, and I don't blame you for not answering me because I must sound crazy, but it is a fact that we have a tradition in our family of having ice cream for dessert after dinner each night. Every night after we've eaten, the family votes on which flavor of ice cream we should have and I drive down to the store to get it. I recently purchased a new Pantsmobile from your company and since then my trips to the store have created a problem. You see, every time I buy vanilla ice cream my car won't start. If I get any other kind of ice cream the car starts just fine. I want you to know I'm serious about this question, no matter how silly it sounds: 'What is there about a Pantsmobile that makes it not start when I get vanilla ice cream, and easy to start whenever I get any other kind?'" The Pantsmobile company President was understandably skeptical about the letter, but he sent an engineer to check it out anyway. He had arranged to meet the man just after dinner time, so the two hopped into the car and drove to the grocery store. The man bought vanilla ice cream that night and, sure enough, after they came back to the car it wouldn't start for several minutes. The engineer returned for three more nights. The first night, the man got chocolate. The car started right away. The second night, he got strawberry and again the car started right up. The third night he bought vanilla and the car failed to start. There was a logical reason why the man's car wouldn't start when he bought vanilla ice cream. What was it? HINT: The man lived in an extremely hot city, and this took place during the summer. Also, the layout of the grocery store was such that it took the man less time to buy vanilla ice cream.
Vanilla ice cream was the most popular flavor and was on display in a little case near the express check out, while the other flavors were in the back of the store and took more time to select and check out. This mattered because the man's car was experiencing vapor lock, which is excess heat boiling the fuel in the fuel line and the resulting air bubbles blocking the flow of fuel until the car has enough time to cool.. When the car was running there was enough pressure to move the bubbles along, but not when the car was trying to start.
93.55 %
39 votes

logicshort

Farmer

If a farmer has 5 haystacks in one field and 4 haystacks in the other field, how many haystacks would he have if he combined them all in the center field?
One. If he combines all of his haystacks, they all become one big stack.
93.39 %
38 votes

logic

Zen Master

A new student met the Zen Master after traveling hundreds of miles by yak cart. He was understandably pleased with himself for being selected to learn at the great master's feet . The first time they formally met, the Zen Master asked, "May I ask you a simple question?" "It would be an honor!" replied the student. "Which is greater, that which has no beginning or that which has no end?" queried the Zen Master. "Come back when you have the answer and can explain why." After the student made many frustrated trips back with answers which the master quickly cast off with a disapproving negative nod, the Zen Master finally said, "Perhaps I should ask you another question?" "Oh, please do!" pleaded the exasperated student. The Zen Master then asked, "Since you do not know that, answer this much simpler riddle. When can a pebble hold back the sea?" Again the student was rebuffed time and again. Several more questions followed with the same result. Each time, the student could not find the correct answer. Finally, completely exasperated, the student began to weep, "Master, I am a complete idiot. I can not solve even the simplest riddle from you!" Suddenly, the student stopped, sat down, and said, "I am ready for my second lesson." What was the Zen Master's first lesson?
The student's first lesson was that in order to learn from the Zen Master, the student should be asking the questions and not the Zen Master.
93.70 %
40 votes