There are 20 people in an empty, square room. Each person has full sight of the entire room and everyone in it without turning his head or body, or moving in any way (other than the eyes). Where can you place an apple so that all but one person can see it?

At a dinner party, many of the guests exchange greetings by shaking hands with each other while they wait for the host to finish cooking.
After all this handshaking, the host, who didn't take part in or see any of the handshaking, gets everybody's attention and says: "I know for a fact that at least two people at this party shook the same number of other people's hands."
How could the host know this? Note that nobody shakes his or her own hand.

Assume there are N people at the party.
Note that the least number of people that someone could shake hands with is 0, and the most someone could shake hands with is N-1 (which would mean that they shook hands with every other person).
Now, if everyone at the party really were to have shaken hands with a different number of people, then that means somone must have shaken hands with 0 people, someone must have shaken hands with 1 person, and so on, all the way up to someone who must have shaken hands with N-1 people. This is the only possible scenario, since there are N people at the party and N different numbers of possible people to shake hands with (all the numbers between 0 and N-1 inclusive).
But this situation isn't possible, because there can't be both a person who shook hands with 0 people (call him Person 0) and a person who shook hands with N-1 people (call him Person N-1). This is because Person 0 shook hands with nobody (and thus didn't shake hands with Person N-1), but Person N-1 shook hands with everybody (and thus did shake hands with Person 0). This is clearly a contradiction, and thus two of the people at the party must have shaken hands with the same number of people.
Pretend there were only 2 guests at the party. Then try 3, and 4, and so on. This should help you think about the problem.
Search: Pigeonhole principle

Four people come to an old bridge in the middle of the night. The bridge is rickety and can only support 2 people at a time. The people have one flashlight, which needs to be held by any group crossing the bridge because of how dark it is.
Each person can cross the bridge at a different rate: one person takes 1 minute, one person takes 2 minutes, one takes 5 minutes, and the one person takes 10 minutes. If two people are crossing the bridge together, it will take both of them the time that it takes the slower person to cross.
Unfortunately, there are only 17 minutes worth of batteries left in the flashlight. How can the four travellers cross the bridge before time runs out?

The two keys here are:
You want the two slowest people to cross together to consolidate their slow crossing times.
You want to make sure the faster people are set up in order to bring the flashlight back quickly after the slow people cross.
So the order is:
1-minute and 2-minute cross (2 minute elapsed)
1-minute comes back (3 minutes elapsed)
5-minute and 10-minute cross (13 minutes elapsed)
2-minute comes back (15 minutes elapsed)
1-minute and 2-minute cross (17 minutes elapsed)

As I was going to the mall I met a man with seven wives. Each wive held two bags, each bag held a mother cat, each mother cat had six babies,
How many people were going to the mall?

Our dinner guests cry that we are evil, when they notice their place in the meal. But its no big deal why; we are just one big happy tribe! And we get really fed up with people!
Who, What or Are we?

There are 4 big houses in my home town. They are made from these materials: red marbles, green marbles, white marbles and blue marbles.
Mrs Jennifer's house is somewhere to the left of the green marbles one and the third one along is white marbles.
Mrs Sharon owns a red marbles house and Mr Cruz does not live at either end, but lives somewhere to the right of the blue marbles house.
Mr Danny lives in the fourth house, while the first house is not made from red marbles.
Who lives where, and what is their house made from ?

From, left to right:
#1 Mrs Jennifer - blue marbles
#2 Mrs Sharon - red marbles
#3 Mr Cruz - white marbles
#4 Mr Danny - green marbles
If we separate and label the clues, and label the houses #1, #2, #3, #4 from left to right we can see that:
a. Mrs Jennifer's house is somewhere to the left of the green marbles one.
b. The third one along is white marbles.
c. Mrs Sharon owns a red marbles house
d. Mr Cruz does not live at either end.
e. Mr Cruz lives somewhere to the right of the blue marbles house.
f. Mr Danny lives in the fourth house
g. The first house is not made from red marbles.
By (g) #1 isn't made from red marbles, and by (b) nor is #3. By (f) Mr Danny lives in #4 therefore by (c) #2 must be red marbles, and Mrs Sharon lives there.
Therefore by (d) Mr Cruz must live in #3, which, by (b) is the white marbles house. By (a) #4 must be green marbles (otherwise Mrs Jennifer couldn't be to its left) and by (f) Mr Danny lives there.
Which leaves Mrs Jennifer, living in #1, the blue marbles house.