A farmer lived in a small village. He had three sons. One day he gave $100 dollars to his sons and told them to go to market. The three sons should buy 100 animals for $100 dollars. In the market there were chickens, hens and goats. Cost of a goat is $10, cost of a hen is $5 and cost of a chicken is $0.50.
There should be at least one animal from each group. The farmer’s sons should spend all the money on buying animals. There should be 100 animals, not a single animal more or less! What do the sons buy?

They purchased 100 animals for 100 dollars.
$10 spent to purchase 1 goat.
$45 spent to purchase 9 hens.
$45 spent to purchase 90 chickens.

There are n coins in a line. (Assume n is even). Two players take turns to take a coin from one of the ends of the line until there are no more coins left. The player with the larger amount of money wins.
Would you rather go first or second? Does it matter?
Assume that you go first, describe an algorithm to compute the maximum amount of money you can win.
Note that the strategy to pick maximum of two corners may not work. In the following example, first player looses the game when he/she uses strategy to pick maximum of two corners.
Example 18 20 15 30 10 14
First Player picks 18, now row of coins is
20 15 30 10 14
Second player picks 20, now row of coins is
15 30 10 14
First Player picks 15, now row of coins is
30 10 14
Second player picks 30, now row of coins is
10 14
First Player picks 14, now row of coins is
10
Second player picks 10, game over.
The total value collected by second player is more (20 + 30 + 10) compared to first player (18 + 15 + 14). So the second player wins.

Going first will guarantee that you will not lose. By following the strategy below, you will always win the game (or get a possible tie).
(1) Count the sum of all coins that are odd-numbered. (Call this X)
(2) Count the sum of all coins that are even-numbered. (Call this Y)
(3) If X > Y, take the left-most coin first. Choose all odd-numbered coins in subsequent moves.
(4) If X < Y, take the right-most coin first. Choose all even-numbered coins in subsequent moves.
(5) If X == Y, you will guarantee to get a tie if you stick with taking only even-numbered/odd-numbered coins.
You might be wondering how you can always choose odd-numbered/even-numbered coins. Let me illustrate this using an example where you have 6 coins:
Example
18 20 15 30 10 14
Sum of odd coins = 18 + 15 + 10 = 43
Sum of even coins = 20 + 30 + 14 = 64.
Since the sum of even coins is more, the first player decides to collect all even coins. He first picks 14, now the other player can only pick a coin (10 or 18). Whichever is picked the other player, the first player again gets an opportunity to pick an even coin and block all even coins.

A young peasant wanted to marry the king's daughter. The king didn't like the idea of his daughter marrying a peasant, but he wanted to appear fair in front of his subjects. The king said that he would put two pieces of paper into a hat, one reading "exile" and the other reading "marriage". Later that day, the peasant overheard the king saying that both pieces of paper would read "exile", thus ensuring that the peasant would be out of his way for good. The peasant remained undaunted and, as arranged, arrived at the king's court where a large crown gathered for the big event. The peasant then did something that assured him the hand of the king's daughter. What did he do?

The peasant picked one of the pieces of paper and tore it up. He then asked the kind to show him the other piece of paper which, of course, said EXILE. The king, not wishing to appear fraudulent in front of his subjects, granted that the piece of paper the peasant had picked must have said MARRIAGE.

You're standing in front of a room with one lightbulb inside of it. You cannot see if it is on or off. Outside the room, there are 3 switches in the off positions. You may turn the switches any way you want to. You stop turning the switches, enter the room and know which switch controls the lightbulb. How?

You turn 2 switches "on" and leave 1 switch "off" and wait about a minute. Then enter the room, but just before you enter, turn one switch from "on" to "off". Once in the room, feel the lightbulb - if it is warm, but off, it has to be the last switch you turned off. If it is on, it has to be the switch left on. If it is cold and is off, it has to be the switch you left in the off position.

You are visiting NYC when a man approaches you.
"Not counting bald people, I bet a hundred bucks that there are two people living in New York City with the same number of hairs on their heads," he tells you.
"I'll take that bet!" you say. You talk to the man for a minute, after which you realize you have lost the bet.
What did the man say to prove his case?

This is a classic example of the pigeonhole principle. The argument goes as follows: assume that every non-bald person in New York City has a different number of hairs on their head. Since there are about 9 million people living in NYC, let's say 8 million of them aren't bald.
So 8 million people need to have different numbers of hairs on their head. But on average, people only have about 100,000 hairs. So even if there was someone with 1 hair, someone with 2 hairs, someone with 3 hairs, and so on, all the way up to someone with 100,000 hairs, there are still 7,900,000 other people who all need different numbers of hairs on their heads, and furthermore, who all need MORE than 100,000 hairs on their head.
You can see that additionally, at least one person would need to have at least 8,000,000 hairs on their head, because there's no way to have 8,000,000 people all have different numbers of hairs between 1 and 7,999,999. But someone having 8,000,000 is an essential impossibility (as is even having 1,000,000 hairs), So there's no way this situation could be the case, where everyone has a different number of hairs. Which means that at least two people have the same number of hairs.

Two trains are traveling toward each other on the same track, each at 60 miles per hour. When they are exactly 120 miles apart, a fly takes off from the front of one of the trains, flying toward the other train at a constant rate of 100 miles per hour. When the fly reaches the other train, it instantly changes directions and starts flying toward the other train, still at 100 miles per hour. It keeps doing this back and forth until the trains finally collide.
If you add up all the distances back and forth that the fly has travelled, how much total distance has the fly travelled when the trains finally collide?

The fly has travelled exactly 100 miles. We can figure this out using some simple math. Becuase the trains are 120 miles apart when the fly takes off, and are travelling at 60 mph each, they will collide in exactly 1 hour. This gives the fly exactly 1 hour of flying time, going at a speed of 100 miles per hour. Thus, the fly will travel 100 miles in this hour.

Once upon a time there was a dad and 3 kids. When the kids were adults, the dad was old and Death came to take the dad. The first son, who became a lawyer, begged Death to let the dad live a few more years. Death agreed. When Death came back, the second son, who became a doctor begged Death to let his father live a few more days. Death agreed. When Death came back the third son, who became a priest begged Death to let the dad live till that candle wick burned out and he pointed to a candle. Death agreed. The third son knew Death wouldn't come back, and he didn't. Why not?

The third son went over and blew out the candle after Death left because the son said "till the candle wick burns out", not "till the candle burns out".