Three ants are sitting at the three corners of an equilateral triangle. Each ant starts randomly picks a direction and starts to move along the edge of the triangle. What is the probability that none of the ants collide?

So let’s think this through. The ants can only avoid a collision if they all decide to move in the same direction (either clockwise or anti-clockwise). If the ants do not pick the same direction, there will definitely be a collision. Each ant has the option to either move clockwise or anti-clockwise. There is a one in two chance that an ant decides to pick a particular direction. Using simple probability calculations, we can determine the probability of no collision.
P(No collision) = P(All ants go in a clockwise direction) + P( All ants go in an anti-clockwise direction) = 0.5 * 0.5 * 0.5 + 0.5 * 0.5 * 0.5 = 0.25

You are somewhere on Earth. You walk due south 1 mile, then due east 1 mile, then due north 1 mile. When you finish this 3-mile walk, you are back exactly where you started.
It turns out there are an infinite number of different points on earth where you might be. Can you describe them all?
It's important to note that this set of points should contain both an infinite number of different latitudes, and an infinite number of different longitudes (though the same latitudes and longitudes can be repeated multiple times); if it doesn't, you haven't thought of all the points.

One of the points is the North Pole. If you go south one mile, and then east one mile, you're still exactly one mile south of the North Pole, so you'll be back where you started when you go north one mile.
To think of the next set of points, imagine the latitude slighty north of the South Pole, where the length of the longitudinal line around the Earth is exactly one mile (put another way, imagine the latitude slightly north of the South Pole where if you were to walk due east one mile, you would end up exactly where you started). Any point exactly one mile north of this latitude is another one of the points you could be at, because you would walk south one mile, then walk east a mile around and end up where you started the eastward walk, and then walk back north one mile to your starting point. So this adds an infinite number of other points we could be at. However, we have not yet met the requirement that our set of points has an infinite number of different latitudes.
To meet this requirement and see the rest of the points you might be at, we just generalize the previous set of points. Imagine the latitude slightly north of the South Pole that is 1/2 mile in distance. Also imagine the latitudes in this area that are 1/3 miles in distance, 1/4 miles in distance, 1/5 miles, 1/6 miles, and so on. If you are at any of these latitudes and you walk exactly one mile east, you will end up exactly where you started. Thus, any point that is one mile north of ANY of these latitudes is another one of the points you might have started at, since you'll walk one mile south, then one mile east and end up where you started your eastward walk, and finally, one mile north back to where you started.

The Miller next took the company aside and showed them nine sacks of flour that were standing as depicted in the sketch.
"Now, hearken, all and some," said he, "while that I do set ye the riddle of the nine sacks of flour.
And mark ye, my lords and masters, that there be single sacks on the outside, pairs next unto them, and three together in the middle thereof.
By Saint Benedict, it doth so happen that if we do but multiply the pair, 28, by the single one, 7, the answer is 196, which is of a truth the number shown by the sacks in the middle.
Yet it be not true that the other pair, 34, when so multiplied by its neighbour, 5, will also make 196.
Wherefore I do beg you, gentle sirs, so to place anew the nine sacks with as little trouble as possible that each pair when thus multiplied by its single neighbour shall make the number in the middle."
As the Miller has stipulated in effect that as few bags as possible shall be moved, there is only one answer to this puzzle, which everybody should be able to solve.

The way to arrange the sacks of flour is as follows: 2, 78, 156, 39, 4. Here each pair when multiplied by its single neighbour makes the number in the middle, and only five of the sacks need be moved.
There are just three other ways in which they might have been arranged (4, 39, 156, 78, 2; or 3, 58, 174, 29, 6; or 6, 29, 174, 58, 3), but they all require the moving of seven sacks.

While mixing sand, gravel, and cement for the foundation of a house, a worker noticed a small bird hopping along the top of the foundation wall. The bird misjudged a hop and fell down one of the holes between the blocks. The bird was down too far for anyone to reach it and the hole was too small for it to fly out of. Someone suggested using two sticks to reach down into the hole and pull the bird out, but this idea was rejected for fear it would injure the fragile bird. What would be the easiest way to get the bird out of the hole without injuring it?

Since they had plenty of sand available, they could pour a little at a time into the hole. The bird would constantly keep shifting its position so that it stood on the rising sand.

A bad king has a cellar of 1000 bottles of delightful and very expensive wine. A neighboring queen plots to kill the bad king and sends a servant to poison the wine.
Fortunately (or say unfortunately) the bad king's guards catch the servant after he has only poisoned one bottle.
Alas, the guards don't know which bottle but know that the poison is so strong that even if diluted 100,000 times it would still kill the king. Furthermore, it takes one month to have an effect.
The bad king decides he will get some of the prisoners in his vast dungeons to drink the wine. Being a clever bad king he knows he needs to murder no more than 10 prisoners – believing he can fob off such a low death rate – and will still be able to drink the rest of the wine (999 bottles) at his anniversary party in 5 weeks time.
Explain what is in mind of the king, how will he be able to do so?

Think in terms of binary numbers. (now don’t read the solution, give a try).
Number the bottles 1 to 1000 and write the number in binary format.
bottle 1 = 0000000001 (10 digit binary)
bottle 2 = 0000000010
bottle 500 = 0111110100
bottle 1000 = 1111101000
Now take 10 prisoners and number them 1 to 10, now let prisoner 1 take a sip from every bottle that has a 1 in its least significant bit. Let prisoner 10 take a sip from every bottle with a 1 in its most significant bit. etc.
prisoner = 10 9 8 7 6 5 4 3 2 1
bottle 924 = 1 1 1 0 0 1 1 1 0 0
For instance, bottle no. 924 would be sipped by 10,9,8,5,4 and 3. That way if bottle no. 924 was the poisoned one, only those prisoners would die.
After four weeks, line the prisoners up in their bit order and read each living prisoner as a 0 bit and each dead prisoner as a 1 bit. The number that you get is the bottle of wine that was poisoned.
1000 is less than 1024 (2^10). If there were 1024 or more bottles of wine it would take more than 10 prisoners.

A man has two ropes of varying thickness (Those two ropes are not identical, they aren’t the same density nor the same length nor the same width). Each rope burns in 60 minutes. He actually wants to measure 45 mins. How can he measure 45 mins using only these two ropes.
He can’t cut the one rope in half because the ropes are non-homogeneous and he can’t be sure how long it will burn.

He will burn one of the rope at both the ends and the second rope at one end. After half an hour, the first one burns completely and at this point of time, he will burn the other end of the second rope so now it will take 15 mins more to completely burn. so total time is 30+15 i.e. 45mins.

Betty signals to the headwaiter in a restaurant, and says, "There is a fly in my tea."
The waiter says "No problem Madam. I will bring you a fresh cup of tea."
A few minutes later Betty shouts, "Get me the manager! This is the same cup of tea."
How did she know?
Hint: The tea is still hot.

Betty had already put sugar in her tea before sending it back. When the "new" cup came, it was already tasted sweet.

Four people need to cross a rickety bridge at night. Unfortunately, they have only one torch and the bridge is too dangerous to cross without one. The bridge is only strong enough to support two people at a time. Not all people take the same time to cross the bridge. Times for each person: 1 min, 2 mins, 7 mins and 10 mins. What is the shortest time needed for all four of them to cross the bridge?

It is 17 mins.
1 and 2 go first, then 1 comes back. Then 7 and 10 go and 2 comes back. Then 1 and 2 go again, it makes a total of 17 minutes.

There is a low railroad bridge in your town. One day you see a large truck stopped just before the underpass. When you ask what has happened, the driver tells you that his truck is half of inch higher than the indicated height of the opening. This is the only road to his destination. What can he do to get through the underpass the easiest way?

Let enough air out of the tires to lower the truck.

You are blindfolded and 10 coins are place in front of you on table. You are allowed to touch the coins, but can't tell which way up they are by feel. You are told that there are 5 coins head up, and 5 coins tails up but not which ones are which.
How do you make two piles of coins each with the same number of heads up?
You can flip the coins any number of times.

Make 2 piles with equal number of coins. Now, flip all the coins in one of the pile.
How this will work? lets take an example.
So initially there are 5 heads, so suppose you divide it in 2 piles.
Case:
P1 : H H T T T
P2 : H H H T T
Now when P1 will be flipped
P1 : T T H H H
P1(Heads) = P2(Heads)
Another case:
P1 : H T T T T
P2 : H H H H T
Now when P1 will be flipped
P1 : H H H H T
P1(Heads) = P2(Heads)