logicMr. Black, Mr. Gray, and Mr. White are fighting in a truel. They each get a gun and take turns shooting at each other until only one person is left. Mr. Black, who hits his shot 1/3 of the time, gets to shoot first. Mr. Gray, who hits his shot 2/3 of the time, gets to shoot next, assuming he is still alive. Mr. White, who hits his shot all the time, shoots next, assuming he is also alive. The cycle repeats. All three competitors know one another's shooting odds. If you are Mr. Black, where should you shoot first for the highest chance of survival?

He should shoot at the ground. If Mr. Black shoots the ground, it is Mr. Gray's turn. Mr. Gray would rather shoot at Mr. White than Mr. Black, because he is better. If Mr. Gray kills Mr. White, it is just Mr. Black and Mr. Gray left, giving Mr. Black a fair chance of winning. If Mr. Gray does not kill Mr. White, it is Mr. White's turn. He would rather shoot at Mr. Gray and will definitely kill him. Even though it is now Mr. Black against Mr. White, Mr. Black has a better chance of winning than before.

## Similar riddles

See also best riddles or new riddles.

cleanlogic100 men are in a room, each wearing either a white or black hat. Nobody knows the color of his own hat, although everyone can see everyone else's hat. The men are not allowed to communicate with each other at all (and thus nobody will ever be able to figure out the color of his own hat).
The men need to line up against the wall such that all the men with black hats are next to each other, and all the men with white hats are next to each other. How can they do this without communicating? You can assume they came up with a shared strategy before coming into the room.

The men go to stand agains the wall one at a time. If a man goes to stand against the wall and all of the men already against the wall have the same color hat, then he just goes and stands at either end of the line. However, if a man goes to stand against the wall and there are men with both black and white hats already against the wall, he goes and stands between the two men with different colored hats. This will maintain the state that the line contains men with one colored hats on one side, and men with the other colored hats on the other side, and when the last man goes and stands against the wall, we'll still have the desired outcome.

logicmysteryThe Smith family is a very wealthy family that lives in a big, circular home. One morning, Mr. Smith woke up and saw a strawberry jam stain on his new carpet. He figured out that everyone who was there that morning had a jam sandwich. By reading the following excuses, figure out who spilled the jam.
Billy Smith: "I was outside playing basketball."
The Maid: "I was dusting the corners of the house."
Chef: "I was starting to make lunch for later."
Who is lying?

It was the maid. The house is circular, it has no corners.

logicYou have just purchased a small company called Company X. Company X has N employees, and everyone is either an engineer or a manager. You know for sure that there are more engineers than managers at the company.
Everyone at Company X knows everyone else's position, and you are able to ask any employee about the position of any other employee. For example, you could approach employee A and ask "Is employee B an engineer or a manager?" You can only direct your question to one employee at a time, and can only ask about one other employee at a time. You're allowed to ask the same employee multiple questions if you want.
Your goal is to find at least one engineer to solve a huge problem that has just hit the company's factory. The problem is so urgent that you only have time to ask N-1 total questions.
The major problem with questioning the employees, however, is that while the engineers will always tell you the truth about other employees' roles, the managers may lie to you if they like. You can assume that the managers will do their best to confuse you.
How can you find at least one engineer by asking at most N-1 questions?

You can find at least one engineer using the following process:
Put all of the employees in a conference room. If there happen to be an even number of employees, pick one at random and send him home for the day so that we start with an odd number of employees. Note that there will still be more engineers than managers after we send this employee home.
Then call them out one at a time in any order. You will be forming them into a line as follows:
If there is nobody currently in the line, put the employee you just called out in the line.
Otherwise, if there is anybody in the line, then we do the following. Let's call the employee currently at the front of the line Employee_Front, and call the employee who we just called out of the conference room Employee_Next.
So ask Employee_Front if Employee_Next is a manager or an engineer.
If Employee_Front says "manager", then send both Employee_Front and Employee_Next home for the day.
However, if Employee_Front says "engineer", then put Employee_Next at the front of the line.
Keep doing this until you've called everyone out of the conference room. Notice that at this point, you'll have asked N-1 or less questions (you asked at most one question each time you called an employee out except for the first employee, when you didn't ask a question, so that's at most N-1 questions).
When you're done calling everyone out of the conference room, the person at the front of the line is an engineer. So you've found your engineer!
But the real question: how does this work?
We can prove this works by showing a few things.
First, let's show that if there are any engineers in the line, then they must be in front of any managers.
We'll show this with a proof by contradiction. Assume that there is a manager in front of an engineer somewhere in the line. Then it must have been the case that at some point, that engineer was Employee_Front and that manager was Employee_Next. But then Employee_Front would have said "manager" (since he is an engineer and always tells the truth), and we would have sent them both home. This contradicts their being in the line at all, and thus we know that there can never be a manager in front of an engineer in the line.
So now we know that after the process is done, if there are any engineers in the line, then they will be at the front of the line. That means that all we have to prove now is that there will be at least one engineer in the line at the end of the process, and we'll know that there will be an engineer at the front.
So let's show that there will be at least one engineer in the line. To see why, consider what happens when we ask Employee_Front about Employee_Next, and Employee_Front says "manager". We know for sure that in this case, Employee_Front and Employee_Next are not both engineers, because if this were the case, then Employee_Front would have definitely says "engineer". Put another way, at least one of Employee_Front and Employee_Next is a manager. So by sending them both home, we know we are sending home at least one manager, and thus, we are keeping the balance in the remaining employees that there are more engineers than managers.
Thus, once the process is over, there will be more engineers than managers in the line (this is also sufficient to show that there will be at least one person in the line once the process is over). And so, there must be at least one engineer in the line.
Put altogether, we proved that at the end of the process, there will be at least one engineer in the line and that any engineers in the line must be in front of any managers, and so we know that the person at the front of the line will be an engineer.

logicYou are killed in a plane crash and find yourself in front of 2 doors: one leads to heaven and one will lead you to hell for eternity. There is an identical troll at each door. You find instructions posted on the wall behind you. You can ask only one question and you can only direct it to only one of the trolls. One troll will always lie to you - regardless of your question - and the other will always tell you the truth. And only the trolls themselves know which one will lie and which one will be truthful. That is all that you are told.... What is the one and only question that will ensure you passage to heaven, and why?

Ask any of the tolls this question. "If I were to ask the other troll which is the door to Heaven, which door would he point to?" Now when the troll answers by pointing to one of the doors you simply take the other door.

logicA boy goes and buys a fishing pole that is 6' 3" long. As he goes to get on the bus, the driver stops him. The driver tells him that he can't take anything longer than 6' onto the bus. The boy goes back into town, purchases one more thing, and the driver allows the boy on the bus. What did the boy buy, and what did he do with it?

The boy bought 6' long box. He put the fishing pole in diagonally and the entire package was only 6'!

logicmysteryA dead body is found at the bottom of a multistory building. Seeing the position of the body, it is evident that the person jumped from one of the floors, committing suicide.
A homicide detective is called to look after the case. He goes to the first floor and walks in the room facing the direction in which the body was found.
He opens the window in that direction and flips a coin towards the floor. Then he goes to the second floor and repeats the process. He keeps on doing this until he reaches the last floor. Then, when he climbs down he tells the team that it is a murder not suicide.
How did he come to know that it was a murder?

None of the windows were left open. If the person jumped, who closed the window?

cleanlogicshortCan you spot what's wrong with the following sentence?
PETER WAS ANGRY AT
HIMSELF BECAUSE HE
ACCIDENTALLY LEFT THE
THE KEYS TO HIS CAR
AT HIS FRIEND'S HOUSE.

It contains the word "THE" twice in a row.

logicmathshort

Think of a number. Double it. Add ten. Half it. Take away the number you started with. What is your number?

Your number is 5.

logicLast week, the local Primary school was visited by the Government School Inspector who was there to check that teachers were performing well in their respective classes. He was very impressed with one particular teacher. The Inspector noticed that each time the class teacher asked a question, every child in the class put up their hands enthusiastically to answer it. More surprisingly, whilst the teacher chose a different child to answer the questions each time, the answers were always correct.
Why would this be?

The children were instructed to ALL raise their hands whenever a question was asked. It did not matter whether they knew the answer or not. If they did not know the answer, however, they would raise their LEFT hand. If they knew the answer, they would raise their RIGHT hand. The class teacher would choose a different child each time, but always the ones who had their RIGHT hand raised.

logic Justin Case and Auntie Bellum are fellow con artists who deliver coded messages to each other to communicate. Recently Auntie Bellum was put in jail for stealing a rare and expensive diamond. Only a few days after this, Justin Case sent her a friendly letter asking her how she was. On the inside of the envelope of the letter, he hid a code. Yesterday, Auntie Bellum escaped and left the envelope and the letter inside the jail cell. The police did some research and found the code on the inside of the envelope, but they haven't been able to crack it. Could you help the police find out what the message is?
This is the code:
llwatchawtfeclocklnisksundialcirbetimersool

The message was "loose bricks in left wall." The message was put backward with words related to time in between. This is how the message looks when separated:
ll watch awtfe clock Inisk sundial cirbe timer sool
If you take out watch, clock, sundial, and timer, this is what is left:
llawtfelniskcirbesool
Look at this backwards and this is what you have:
loose bricks in left wall
Auntie Bellum took out the bricks and escaped in the night. Then, she put the bricks back where they were.