Best long riddles


In classic mythology, there is the story of the Sphinx, a monster with the body of a lion and the upper part of a woman. The Sphinx lay crouched on the top of a rock along the highroad to the city of Thebes, and stopped all travellers passing by, proposing to them a riddle. Those who failed to answer the riddle correctly were killed. This is the riddle the Sphinx asked the travellers: "What animal walks on four legs in the morning, two legs during the day, and three legs in the evening?"
This is part of the story of Oedipus, who replied to the Sphinx, "Man, who in childhood creeps on hands and knees, in manhood walks erect, and in old age with the aid of a staff." Morning, day and night are representative of the stages of life. The Sphinx was so mortified at the solving of her riddle that she cast herself down from the rock and perished.
78.63 %
993 votes

Pirate Pete had been captured by a Spanish general and sentenced to death by his 50-man firing squad. Pete cringed, as he knew their reputation for being the worst firing squad in the Spanish military. They were such bad shots that they would often all miss their targets and simply maim their victims, leaving them to bleed to death, as the general's tradition was to only allow one shot per man to save on ammunition. The thought of a slow painful death made Pete beg for mercy. "Very well, I have some compassion. You may choose where the men stand when they shoot you and I will add 50 extra men to the squad to ensure someone will at least hit you. Perhaps if they stand closer they will kill you quicker, if you're lucky," snickered the general. "Oh, and just so you don't get any funny ideas, they can't stand more than 20 ft away, they must be facing you, and you must remain tied to the post in the middle of the yard. And to show I'm not totally heartless, if you aren't dead by sundown I'll release you so you can die peacefully outside the compound. I must go now but will return tomorrow and see to it that you are buried in a nice spot, though with 100 men, I doubt there will be much left of you to bury." After giving his instructions the general left. Upon his return the next day, he found that Pete had been set free alive and well. "How could this be?" demanded the general. "It was where Pete had us stand," explained the captain of the squad. Where did Pete tell them to stand?
Pete told them to form a circle around him. All the squad was facing in at Pete, ready to shoot, when they realized that everyone who missed would likely end up shooting another squad member. So no one dared to fire, knowing the risk. Thus at sundown he was released.
78.34 %
106 votes

You have a basket of infinite size (meaning it can hold an infinite number of objects). You also have an infinite number of balls, each with a different number on it, starting at 1 and going up (1, 2, 3, etc...). A genie suddenly appears and proposes a game that will take exactly one minute. The game is as follows: The genie will start timing 1 minute on his stopwatch. Where there is 1/2 a minute remaining in the game, he'll put balls 1, 2, and 3 into the basket. At the exact same moment, you will grab a ball out of the basket (which could be one of the balls he just put in, or any ball that is already in the basket) and throw it away. Then when 3/4 of the minute has passed, he'll put in balls 4, 5, and 6, and again, you'll take a ball out and throw it away. Similarly, at 7/8 of a minute, he'll put in balls 7, 8, and 9, and you'll take out and throw away one ball. Similarly, at 15/16 of a minute, he'll put in balls 10, 11, and 12, and you'll take out and throw away one ball. And so on....After the minute is up, the genie will have put in an infinite number of balls, and you'll have thrown away an infinite number of balls. Assume that you pull out a ball at the exact same time the genie puts in 3 balls, and that the amount of time this takes is infinitesimally small. You are allowed to choose each ball that you pull out as the game progresses (for example, you could choose to always pull out the ball that is divisible by 3, which would be 3, then 6, then 9, and so on...). You play the game, and after the minute is up, you note that there are an infinite number of balls in the basket. The next day you tell your friend about the game you played with the genie. "That's weird," your friend says. "I played the exact same game with the genie yesterday, except that at the end of my game there were 0 balls left in the basket." How is it possible that you could end up with these two different results?
Your strategy for choosing which ball to throw away could have been one of many. One such strategy that would leave an infinite number of balls in the basket at the end of the game is to always choose the ball that is divisible by 3 (so 3, then 6, then 9, and so on...). Thus, at the end of the game, any ball of the format 3n+1 (i.e. 1, 4, 7, etc...), or of the format 3n+2 (i.e. 2, 5, 8, etc...) would still be in the basket. Since there will be an infinite number of such balls that the genie has put in, there will be an infinite number of balls in the basket. Your friend could have had a number of strategies for leaving 0 balls in the basket. Any strategy that guarantees that every ball n will be removed after an infinite number of removals will result in 0 balls in the basket. One such strategy is to always choose the lowest-numbered ball in the basket. So first 1, then 2, then 3, and so on. This will result in an empty basket at the game's end. To see this, assume that there is some ball in the basket at the end of the game. This ball must have some number n. But we know this ball was thrown out after the n-th round of throwing balls away, so it couldn't be in there. This contradiction shows that there couldn't be any balls left in the basket at the end of the game. An interesting aside is that your friend could have also used the strategy of choosing a ball at random to throw away, and this would have resulted in an empty basket at the end of the game. This is because after an infinite number of balls being thrown away, the probability of any given ball being thrown away reaches 100% when they are chosen at random.
77.53 %
70 votes

Two soldiers, William and Ethan, are assigned to guard a bridge, which connects the West and East sides of the Great Kingdom. Each soldier is ordered to stand at an end of the bridge to make sure no criminals cross. On one side of the bridge stands William, watching over the West side of the kingdom, and making sure no shady characters try to cross the bridge. Ethan stands on the other side of the bridge, facing the East side of the kingdom with his rifle at the ready in case any criminals try to pass across. "Any criminals today?" William asks. Ethan rolls his eyes. "What do you think?" he asks. "You roll your eyes too much," William says. How could William tell that Ethan was rolling his eyes?
William is on the east side of the bridge, facing the West side of the kingdom, while Ethan is on the west side of the bridge, facing the East side of the kingdom. So William and Ethan are facing each other, and can see each other's faces.
77.36 %
64 votes

You die and the devil says he'll let you go to heaven if you beat him in a game. The devil sits you down at a perfectly round table. He gives himself and you an infinite pile of quarters. He says, "OK, we'll take turns putting one quarter down, no overlapping allowed, and the quarters must rest flat on the table surface. The first guy who can't put a quarter down loses." You guys are about to start playing, and the devil says that he'll go first. However, at this point you immediately interject, and ask if you can go first instead. You make this interjection because you are very smart and can place quarters perfectly, and you know that if you go first, you can guarantee victory. Explain how you can guarantee victory.
You place a quarter right in the center of the table. After that, whenever the devil places a quarter on the table, mimic his placement on the opposite side of the table.. If he has a place to place a quarter, so will you. The devil will run out of places to put a quarter before you do.
77.33 %
101 votes

There are 1 million closed school lockers in a row, labeled 1 through 1,000,000. You first go through and flip every locker open. Then you go through and flip every other locker (locker 2, 4, 6, etc...). When you're done, all the even-numbered lockers are closed. You then go through and flip every third locker (3, 6, 9, etc...). "Flipping" mean you open it if it's closed, and close it if it's open. For example, as you go through this time, you close locker 3 (because it was still open after the previous run through), but you open locker 6, since you had closed it in the previous run through. Then you go through and flip every fourth locker (4, 8, 12, etc...), then every fifth locker (5, 10, 15, etc...), then every sixth locker (6, 12, 18, etc...) and so on. At the end, you're going through and flipping every 999,998th locker (which is just locker 999,998), then every 999,999th locker (which is just locker 999,999), and finally, every 1,000,000th locker (which is just locker 1,000,000). At the end of this, is locker 1,000,000 open or closed?
Locker 1,000,000 will be open. If you think about it, the number of times that each locker is flipped is equal to the number of factors it has. For example, locker 12 has factors 1, 2, 3, 4, 6, and 12, and will thus be flipped 6 times (it will end be flipped when you flip every one, every 2nd, every 3rd, every 4th, every 6th, and every 12th locker). It will end up closed, since flipping an even number of times will return it to its starting position. You can see that if a locker number has an even number of factors, it will end up closed. If it has an odd number of factors, it will end up open. As it turns out, the only types of numbers that have an odd number of factors are squares. This is because factors come in pairs, and for squares, one of those pairs is the square root, which is duplicated and thus doesn't count twice as a factor. For example, 12's factors are 1 x 12, 2 x 6, and 3 x 4 (6 total factors). On the other hand, 16's factors are 1 x 16, 2 x 8, and 4 x 4 (5 total factors). So lockers 1, 4, 9, 16, 25, etc... will all be open. Since 1,000,000 is a square number (1000 x 1000), it will be open as well.
77.32 %
80 votes
what am I

Take away my first letter, and I still sound the same. Take away my last letter, I still sound the same. Even take away my letter in the middle, I will still sound the same. I am a five letter word. What am I?
77.24 %
690 votes

Two trains are traveling toward each other on the same track, each at 60 miles per hour. When they are exactly 120 miles apart, a fly takes off from the front of one of the trains, flying toward the other train at a constant rate of 100 miles per hour. When the fly reaches the other train, it instantly changes directions and starts flying toward the other train, still at 100 miles per hour. It keeps doing this back and forth until the trains finally collide. If you add up all the distances back and forth that the fly has travelled, how much total distance has the fly travelled when the trains finally collide?
The fly has travelled exactly 100 miles. We can figure this out using some simple math. Becuase the trains are 120 miles apart when the fly takes off, and are travelling at 60 mph each, they will collide in exactly 1 hour. This gives the fly exactly 1 hour of flying time, going at a speed of 100 miles per hour. Thus, the fly will travel 100 miles in this hour.
77.23 %
69 votes

A Panda Bear walked into a restaurant. He sat down at a table and ordered some food. When he was finished eating, he took out a gun and shot his waiter. He then left the restaurant.After the police caught up with him, they asked him why he had killed the waiter.He replied, "Look me up in the dictionary." What did the dictionary say?
When they looked up the word "Panda" in the dictionary, it stated, "Panda: Eats shoots and leaves."
77.19 %
445 votes

An archeologist claims he found a Roman coin dated 46 B.C. in Egypt. How much should Louvre Museum pay for the coin? Note: Roman coins can really be found in Egypt
Nothing. That coin is as phony as a three dollar bill. In 46 B.C., they wouldn't have known how many years before Christ it was.
77.13 %
74 votes
Page 1 of 36.