Long story riddles

cleanstoryclever

In classic mythology, there is the story of the Sphinx, a monster with the body of a lion and the upper part of a woman. The Sphinx lay crouched on the top of a rock along the highroad to the city of Thebes, and stopped all travellers passing by, proposing to them a riddle. Those who failed to answer the riddle correctly were killed. This is the riddle the Sphinx asked the travellers: "What animal walks on four legs in the morning, two legs during the day, and three legs in the evening?"
This is part of the story of Oedipus, who replied to the Sphinx, "Man, who in childhood creeps on hands and knees, in manhood walks erect, and in old age with the aid of a staff." Morning, day and night are representative of the stages of life. The Sphinx was so mortified at the solving of her riddle that she cast herself down from the rock and perished.
82.40 %
781 votes
storyclever

In a far away land, it was known that if you drank poison, the only way to save yourself is to drink a stronger poison, which neutralizes the weaker poison. The king that ruled the land wanted to make sure that he possessed the strongest poison in the kingdom, in order to ensure his survival, in any situation. So the king called the kingdom's pharmacist and the kingdom's treasurer, he gave each a week to make the strongest poison. Then, each would drink the other one's poison, then his own, and the one that will survive, will be the one that had the stronger poison. The pharmacist went straight to work, but the treasurer knew he had no chance, for the pharmacist was much more experienced in this field, so instead, he made up a plan to survive and make sure the pharmacist dies. On the last day the pharmacist suddenly realized that the treasurer would know he had no chance, so he must have a plan. After a little thought, the pharmacist realized what the treasurer's plan must be, and he concocted a counter plan, to make sure he survives and the treasurer dies. When the time came, the king summoned both of them. They drank the poisons as planned, and the treasurer died, the pharmacist survived, and the king didn't get what he wanted. What exactly happened there?
The treasurer's plan was to drink a weak poison prior to the meeting with the king, and then he would drink the pharmacist's strong poison, which would neutralize the weak poison. As his own poison he would bring water, which will have no effect on him, but the pharmacist who would drink the water, and then his poison would surely die. When the pharmacist figured out this plan, he decided to bring water as well. So the treasurer who drank poison earlier, drank the pharmacist's water, then his own water, and died of the poison he drank before. The pharmacist would drink only water, so nothing will happen to him. And because both of them brought the king water, he didn't get a strong poison like he wanted.
80.31 %
99 votes
logicstoryclever

You have just purchased a small company called Company X. Company X has N employees, and everyone is either an engineer or a manager. You know for sure that there are more engineers than managers at the company. Everyone at Company X knows everyone else's position, and you are able to ask any employee about the position of any other employee. For example, you could approach employee A and ask "Is employee B an engineer or a manager?" You can only direct your question to one employee at a time, and can only ask about one other employee at a time. You're allowed to ask the same employee multiple questions if you want. Your goal is to find at least one engineer to solve a huge problem that has just hit the company's factory. The problem is so urgent that you only have time to ask N-1 total questions. The major problem with questioning the employees, however, is that while the engineers will always tell you the truth about other employees' roles, the managers may lie to you if they like. You can assume that the managers will do their best to confuse you. How can you find at least one engineer by asking at most N-1 questions?
You can find at least one engineer using the following process: Put all of the employees in a conference room. If there happen to be an even number of employees, pick one at random and send him home for the day so that we start with an odd number of employees. Note that there will still be more engineers than managers after we send this employee home. Then call them out one at a time in any order. You will be forming them into a line as follows: If there is nobody currently in the line, put the employee you just called out in the line. Otherwise, if there is anybody in the line, then we do the following. Let's call the employee currently at the front of the line Employee_Front, and call the employee who we just called out of the conference room Employee_Next. So ask Employee_Front if Employee_Next is a manager or an engineer. If Employee_Front says "manager", then send both Employee_Front and Employee_Next home for the day. However, if Employee_Front says "engineer", then put Employee_Next at the front of the line. Keep doing this until you've called everyone out of the conference room. Notice that at this point, you'll have asked N-1 or less questions (you asked at most one question each time you called an employee out except for the first employee, when you didn't ask a question, so that's at most N-1 questions). When you're done calling everyone out of the conference room, the person at the front of the line is an engineer. So you've found your engineer! But the real question: how does this work? We can prove this works by showing a few things. First, let's show that if there are any engineers in the line, then they must be in front of any managers. We'll show this with a proof by contradiction. Assume that there is a manager in front of an engineer somewhere in the line. Then it must have been the case that at some point, that engineer was Employee_Front and that manager was Employee_Next. But then Employee_Front would have said "manager" (since he is an engineer and always tells the truth), and we would have sent them both home. This contradicts their being in the line at all, and thus we know that there can never be a manager in front of an engineer in the line. So now we know that after the process is done, if there are any engineers in the line, then they will be at the front of the line. That means that all we have to prove now is that there will be at least one engineer in the line at the end of the process, and we'll know that there will be an engineer at the front. So let's show that there will be at least one engineer in the line. To see why, consider what happens when we ask Employee_Front about Employee_Next, and Employee_Front says "manager". We know for sure that in this case, Employee_Front and Employee_Next are not both engineers, because if this were the case, then Employee_Front would have definitely says "engineer". Put another way, at least one of Employee_Front and Employee_Next is a manager. So by sending them both home, we know we are sending home at least one manager, and thus, we are keeping the balance in the remaining employees that there are more engineers than managers. Thus, once the process is over, there will be more engineers than managers in the line (this is also sufficient to show that there will be at least one person in the line once the process is over). And so, there must be at least one engineer in the line. Put altogether, we proved that at the end of the process, there will be at least one engineer in the line and that any engineers in the line must be in front of any managers, and so we know that the person at the front of the line will be an engineer.
79.77 %
66 votes
logicstoryclever

You've been placed on a course of expensive medication in which you are to take one tablet of Plusin and one tablet of Minusin daily. You must be careful that you take just one of each because taking more of either can have serious side effects. Taking Plusin without taking Minusin, or vice versa, can also be very serious, because they must be taken together in order to be effective. In summary, you must take exactly one of the Plusin pills and one of the Minusin pills at one time. Therefore, you open up the Plusin bottle, and you tap one Plusin pill into your hand. You put that bottle aside and you open the Minusin bottle. You do the same, but by mistake, two Minusins fall into your hand with the Plusin pill. Now, here's the problem. You weren't watching your hand as the pills fell into it, so you can't tell the Plusin pill apart from the two Minusin pills. The pills look identical. They are both the same size, same weight (10 micrograms), same color (Blue), same shape (perfect square), same everything, and they are not marked differently in any way. What are you going to do? You cannot tell which pill is which, and they cost $500 a piece, so you cannot afford to throw them away and start over again. How do you get your daily dose of exactly one Plusin and exactly one Minusin without wasting any of the pills?
Carefully cut each of the three pills in half, and carefully separate them into two piles, with half of each pill in each pile. You do not know which pill is which, but you are 100% sure that each of the two piles now contains two halves of Minusin and half of Plusin. Now go back into the Plusin bottle, take out a pill, cut it in half, and add one half to each stack. Now you have two stacks, each one containing two halves of Plusin and two halves of Minusin. Take one stack of pills today, and save the second stack for tomorrow.
79.46 %
77 votes
logictrickysimplestory

A duke was hunting in the forest with his men-at-arms and servants when he came across a tree. Upon it, archery targets were painted and smack in the middle of each was an arrow. "Who is this incredibly fine archer?" cried the duke. "I must find him!" After continuing through the forest for a few miles he came across a small boy carrying a bow and arrow. Eventually the boy admitted that it was he who shot the arrows plumb in the center of all the targets. "You didn't just walk up to the targets and hammer the arrows into the middle, did you?" asked the duke worriedly. "No my lord. I shot them from a hundred paces. I swear it by all that I hold holy." "That is truly astonishing," said the duke. "I hereby admit you into my service." The boy thanked him profusely. "But I must ask one favor in return," the duke continued. "You must tell me how you came to be such an outstanding shot." How'd he get to be such a good shot?
The boy shot the arrow, then painted the circle around it.
79.32 %
94 votes
logiccleverstory

A monk leaves at sunrise and walks on a path from the front door of his monastery to the top of a nearby mountain. He arrives at the mountain summit exactly at sundown. The next day, he rises again at sunrise and descends down to his monastery, following the same path that he took up the mountain. Assuming sunrise and sunset occured at the same time on each of the two days, prove that the monk must have been at some spot on the path at the same exact time on both days.
Imagine that instead of the same monk walking down the mountain on the second day, that it was actually a different monk. Let's call the monk who walked up the mountain monk A, and the monk who walked down the mountain monk B. Now pretend that instead of walking down the mountain on the second day, monk B actually walked down the mountain on the first day (the same day monk A walks up the mountain). Monk A and monk B will walk past each other at some point on their walks. This moment when they cross paths is the time of day at which the actual monk was at the same point on both days. Because in the new scenario monk A and monk B MUST cross paths, this moment must exist.
79.19 %
58 votes
logiccleanstory

One day a really rich old man with two sons died. In his will he said that he would give one of his sons all of his fortune. He gave each of his sons a horse and said they would compete in a horse race from Los Angeles to Sacramento, but the son whose horse came in second would get the money. So one day they started the race. After one whole day they had only ridden one mile. At night they decided they should stop at a hotel. While they were booking in they told their problem to the wise old clerk, who made a suggestion. The next day the two brothers rode as fast as they could. What did the clerk suggest that they do?
The clerk told them to swap horses. The father said that whoever's horse crossed the finish line second would get the money. He didn't say that the owner of the horse had to be on it.
79.19 %
58 votes
trickylogicstory

Two men working at a construction site were up for a challenge, and they were pretty mad at each other. Finally, at lunch break, they confronted one another. One man, obviously stronger, said "See that wheelbarrow? I'm willin' to bet $100 (that's all I have in my wallet here) that you can't wheel something to that cone and back that I can't do twice as far. Do you have a bet?" The other man, too dignified to decline, shook his hand, but he had a plan formulating. He looked at the objects lying around: a pile of 400 bricks, a steel beam, the 10 men that had gathered around to watch, his pickup truck, a stack of ten bags of concrete mix, and then he finalized his plan. "All right," he said, and revealed his object. That night, the strong man went home thoroughly teased and $100 poorer. What did the other man choose?
He looked the man right in the eye and said "get in."
79.00 %
81 votes
logictrickystory

Once upon a time there was a dad and 3 kids. When the kids were adults, the dad was old and Death came to take the dad. The first son, who became a lawyer, begged Death to let the dad live a few more years. Death agreed. When Death came back, the second son, who became a doctor begged Death to let his father live a few more days. Death agreed. When Death came back the third son, who became a priest begged Death to let the dad live till that candle wick burned out and he pointed to a candle. Death agreed. The third son knew Death wouldn't come back, and he didn't. Why not?
The third son went over and blew out the candle after Death left because the son said "till the candle wick burns out", not "till the candle burns out".
78.73 %
108 votes
logicmathstorycleaninterview

You are somewhere on Earth. You walk due south 1 mile, then due east 1 mile, then due north 1 mile. When you finish this 3-mile walk, you are back exactly where you started. It turns out there are an infinite number of different points on earth where you might be. Can you describe them all? It's important to note that this set of points should contain both an infinite number of different latitudes, and an infinite number of different longitudes (though the same latitudes and longitudes can be repeated multiple times); if it doesn't, you haven't thought of all the points.
One of the points is the North Pole. If you go south one mile, and then east one mile, you're still exactly one mile south of the North Pole, so you'll be back where you started when you go north one mile. To think of the next set of points, imagine the latitude slighty north of the South Pole, where the length of the longitudinal line around the Earth is exactly one mile (put another way, imagine the latitude slightly north of the South Pole where if you were to walk due east one mile, you would end up exactly where you started). Any point exactly one mile north of this latitude is another one of the points you could be at, because you would walk south one mile, then walk east a mile around and end up where you started the eastward walk, and then walk back north one mile to your starting point. So this adds an infinite number of other points we could be at. However, we have not yet met the requirement that our set of points has an infinite number of different latitudes. To meet this requirement and see the rest of the points you might be at, we just generalize the previous set of points. Imagine the latitude slightly north of the South Pole that is 1/2 mile in distance. Also imagine the latitudes in this area that are 1/3 miles in distance, 1/4 miles in distance, 1/5 miles, 1/6 miles, and so on. If you are at any of these latitudes and you walk exactly one mile east, you will end up exactly where you started. Thus, any point that is one mile north of ANY of these latitudes is another one of the points you might have started at, since you'll walk one mile south, then one mile east and end up where you started your eastward walk, and finally, one mile north back to where you started.
78.61 %
68 votes
1234
MORE RIDDLES >
Page 1 of 6.