# Riddle #1031

## Men at work

Two men working at a construction site were up for a challenge, and they were pretty mad at each other. Finally, at lunch break, they confronted one another. One man, obviously stronger, said "See that wheelbarrow? I'm willin' to bet \$100 (that's all I have in my wallet here) that you can't wheel something to that cone and back that I can't do twice as far. Do you have a bet?" The other man, too dignified to decline, shook his hand, but he had a plan formulating. He looked at the objects lying around: a pile of 400 bricks, a steel beam, the 10 men that had gathered around to watch, his pickup truck, a stack of ten bags of concrete mix, and then he finalized his plan. "All right," he said, and revealed his object. That night, the strong man went home thoroughly teased and \$100 poorer. What did the other man choose?
He looked the man right in the eye and said "get in."
74.39 %

## Mt. Everest

Before Mt. Everest was discovered, what was the highest mountain in the world?
Mt. Everest; it just wasn’t discovered yet.
77.17 %

## The wise man and the dove

A wise man lived on a hill above a small town. The townspeople often approached him to solve their difficult problems and riddles. One day, two lads decided to fool him. They took a dove and set off up the hill. Standing before him, one of the lads said "Tell me, wise man, is the dove I hold behind my back dead or alive?" The man smiled and said "I cannot answer your question correctly". Even though the wise man knew the condition of the dove, why wouldn't he state whether it was dead or alive?
The man told the two lads, "If I say the dove is alive, you will the bird and show me that it is dead. If I say that it is dead, you will release the dove and it will fly away. So you see I cannot answer your question. Search: Schrödinger's cat
77.05 %

## Colored Hats Against The Wall

100 men are in a room, each wearing either a white or black hat. Nobody knows the color of his own hat, although everyone can see everyone else's hat. The men are not allowed to communicate with each other at all (and thus nobody will ever be able to figure out the color of his own hat). The men need to line up against the wall such that all the men with black hats are next to each other, and all the men with white hats are next to each other. How can they do this without communicating? You can assume they came up with a shared strategy before coming into the room.
The men go to stand agains the wall one at a time. If a man goes to stand against the wall and all of the men already against the wall have the same color hat, then he just goes and stands at either end of the line. However, if a man goes to stand against the wall and there are men with both black and white hats already against the wall, he goes and stands between the two men with different colored hats. This will maintain the state that the line contains men with one colored hats on one side, and men with the other colored hats on the other side, and when the last man goes and stands against the wall, we'll still have the desired outcome.
76.99 %

Once upon a time there was a dad and 3 kids. When the kids were adults, the dad was old and Death came to take the dad. The first son, who became a lawyer, begged Death to let the dad live a few more years. Death agreed. When Death came back, the second son, who became a doctor begged Death to let his father live a few more days. Death agreed. When Death came back the third son, who became a priest begged Death to let the dad live till that candle wick burned out and he pointed to a candle. Death agreed. The third son knew Death wouldn't come back, and he didn't. Why not?
The third son went over and blew out the candle after Death left because the son said "till the candle wick burns out", not "till the candle burns out".
76.92 %

## A man was driving a truck

A man was driving a truck at 60 mph. He did not have his headlights on and the moon was not up. Yet he did not hit the woman who crossed the road. How?
He was driving the truck during daytime.
76.80 %

## Hardware store in Boston

Fred went to a hardware store in Boston with Alex, Ben, and George. He noted that a hammer cost ten times as much as a screwdriver and a power saw cost ten times as much as a hammer. The storekeeper said that Ben could buy a power saw, George could buy a screwdriver and Alex could buy a hammer. Based on this what would the storekeeper let Fred buy? Alex's full name is Alexander and Ben's full name is Benjamin. George was Alex's boss and good friend.
Fred could buy all three (the power saw, hammer and screw driver) since he had \$111 with him (a \$1 bill - George Washington, a \$10 Alexander Hamilton, and a \$100 bill - Ben Franklin). Boston is in the USA and therefore uses the US currency I just described.
76.59 %

## The Miller's Daughter

A poor miller living with his daughter comes onto hard times and is not able to pay his rent. His evil landlord threatens to evict them unless the daughter marries him. The daughter, not wanting to marry the landlord but fearing that her father won't be able to take being evicted, suggests the following proposition to the landlord. He will put two stones, one white and one black, into a bag in front of the rest of the townspeople. She will pick one stone out of the bag. If she picks the white stone, the landlord will forgive their debt and let them stay, but if she picks the black stone, she will marry the landlord, and her father will be evicted anyway. The landlord agrees to the proposal. Everybody meets in the center of the town. The landlord picks up two stones to put in the bag, but the daughter notices that he secretly picked two black stones. She is about to reveal his deception but realizes that this would embarrass him in front of the townspeople, and he would evict them. She quickly comes up with another plan. What can she do that will allow the landlord save face, while also ensuring that she and her father can stay and that she won't have to marry the landlord?
The daughter picks a stone out, keeps it in her closed hand, and proclaims "this is my stone." She then throws it to the ground, and says "look at the other stone in the bag, and if it's black, that means I picked the white stone." The landlord will reveal the other stone, which is obviously black, and the daughter will have succeeded. The landlord was never revealed as a cheater and thus was able to save face.
76.33 %

## Wires, batteries and lightbulbs

You are standing in a house in the middle of the countryside. There is a small hole in one of the interior walls of the house, through which 100 identical wires are protruding. From this hole, the wires run underground all the way to a small shed exactly 1 mile away from the house, and are protruding from one of the shed's walls so that they are accessible from inside the shed. The ends of the wires coming out of the house wall each have a small tag on them, labeled with each number from 1 to 100 (so one of the wires is labeled "1", one is labeled "2", and so on, all the way through "100"). Your task is to label the ends of the wires protruding from the shed wall with the same number as the other end of the wire from the house (so, for example, the wire with its end labeled "47" in the house should have its other end in the shed labeled "47" as well). To help you label the ends of the wires in the shed, there are an unlimited supply of batteries in the house, and a single lightbulb in the shed. The way it works is that in the house, you can take any two wires and attach them to a single battery. If you then go to the shed and touch those two wires to the lightbulb, it will light up. The lightbulb will only light up if you touch it to two wires that are attached to the same battery. You can use as many of the batteries as you want, but you cannot attach any given wire to more than one battery at a time. Also, you cannot attach more than two wires to a given battery at one time. (Basically, each battery you use will have exactly two wires attached to it). Note that you don't have to attach all of the wires to batteries if you don't want to. Your goal, starting in the house, is to travel as little distance as possible in order to label all of the wires in the shed. You tell a few friends about the task at hand. "That will require you to travel 15 miles!" of of them exclaims. "Pish posh," yells another. "You'll only have to travel 5 miles!" "That's nonsense," a third replies. "You can do it in 3 miles!" Which of your friends is correct? And what strategy would you use to travel that number of miles to label all of the wires in the shed?
Believe it or not, you can do it travelling only 3 miles! The answer is rather elegant. Starting from the house, don't attach wires 1 and 2 to any batteries, but for the remaining wires, attach them in consecutive pairs to batteries (so attach wires 3 and 4 to the same battery, attach wires 5 and 6 to the same battery, and so on all the way through wires 99 and 100). Now travel 1 mile to the shed, and using the lightbulb, find all pairs of wires that light it up. Put a rubberband around each pair or wires that light up the lightbulb. The two wires that don't light up any lightbulbs are wires 1 and 2 (though you don't know yet which one of them is wire 1 and which is wire 2). Put a rubberband around this pair of wires as well, but mark it so you remember that they are wires 1 and 2. Now go 1 mile back to the house, and attach odd-numbered wires to batteries in the following pairs: (1 and 3), (5 and 7), (9 and 11), and so on, all the way through (97 and 99). Similarly, attach even-numbered wires to batteries in the following pairs: (4 and 6), (8 and 10), (12 and 14), and so on, all the way through (96 and 98). Note that in this round, we didn't attach wire 2 or wire 100 to any batteries. Finally, travel 1 mile back to the shed. You're now in a position to label all of the wires here. First, remember we know the pair of wires that are, collectively, wires 1 and 2. So test wires 1 and 2 with all the other wires to see what pair lights up the lightbulb. The wire from wires 1 and 2 that doesn't light up the bulb is wire 2 (which, remember, we didn't connect to a battery), and the other is wire 1, so we can label these as such. Furthermore, the wire that, with wire 1, lights up a lightbulb, is wire 3 (remember how we connected the wires this round). Now, the other wire in the rubber band with wire 3 is wire 4 (we know this from the first round), and the wire that, with wire 4, lights up the lightbulb, is wire 6 (again, because of how we connected the wires to batteries this round). We can continue labeling batteries this way (next we'll label wire 7, which is rubber-banded to wire 6, and then we'll label wire 9, which lights up the lightbulb with wire 7, and so on). At the end, we'll label wire 97, and then wire 99 (which lights up the lightbulb with wire 97), and finally wire 100 (which isn't connected to a battery this round, but is rubber-banded to wire 99). And we're done, having travelled only 3 miles!
76.26 %

## Fancy restaurant

A fancy restaurant in New York was offering a promotional deal. A married couple could eat at the restaurant for half-price on their anniversary. To prevent scams, the couple would need proof of their wedding date. One Thursday evening, a couple claimed it was their anniversary, but didn't bring any proof. The restaurant manager was called to speak with the couple. When the manager asked to hear about the wedding day, the wife replied with the following: "Oh, it was a wonderful Sunday afternoon, birds were chirping, and flowers were in full bloom." After nearly 10 minutes of ranting, she comes to tell him that today was their 28th wedding anniversary. "How lovely", the manager said, "However, you do not qualify for the discount. Today is not your anniversary, you are a liar". How did the manager know that it wasn't their anniversary?
The calendar repeats itself every 28 years. So, if they were married on a Sunday 28 years ago, the day they were at the restaurant would also have to be a Sunday. Since it was a Thursday, the manager knew they were lying, and abruptly kicked them out of his restaurant.
76.20 %