Two trains are traveling toward each other on the same track, each at 60 miles per hour. When they are exactly 120 miles apart, a fly takes off from the front of one of the trains, flying toward the other train at a constant rate of 100 miles per hour. When the fly reaches the other train, it instantly changes directions and starts flying toward the other train, still at 100 miles per hour. It keeps doing this back and forth until the trains finally collide.
If you add up all the distances back and forth that the fly has travelled, how much total distance has the fly travelled when the trains finally collide?

The fly has travelled exactly 100 miles. We can figure this out using some simple math. Becuase the trains are 120 miles apart when the fly takes off, and are travelling at 60 mph each, they will collide in exactly 1 hour. This gives the fly exactly 1 hour of flying time, going at a speed of 100 miles per hour. Thus, the fly will travel 100 miles in this hour.

You are somewhere on Earth. You walk due south 1 mile, then due east 1 mile, then due north 1 mile. When you finish this 3-mile walk, you are back exactly where you started.
It turns out there are an infinite number of different points on earth where you might be. Can you describe them all?
It's important to note that this set of points should contain both an infinite number of different latitudes, and an infinite number of different longitudes (though the same latitudes and longitudes can be repeated multiple times); if it doesn't, you haven't thought of all the points.

One of the points is the North Pole. If you go south one mile, and then east one mile, you're still exactly one mile south of the North Pole, so you'll be back where you started when you go north one mile.
To think of the next set of points, imagine the latitude slighty north of the South Pole, where the length of the longitudinal line around the Earth is exactly one mile (put another way, imagine the latitude slightly north of the South Pole where if you were to walk due east one mile, you would end up exactly where you started). Any point exactly one mile north of this latitude is another one of the points you could be at, because you would walk south one mile, then walk east a mile around and end up where you started the eastward walk, and then walk back north one mile to your starting point. So this adds an infinite number of other points we could be at. However, we have not yet met the requirement that our set of points has an infinite number of different latitudes.
To meet this requirement and see the rest of the points you might be at, we just generalize the previous set of points. Imagine the latitude slightly north of the South Pole that is 1/2 mile in distance. Also imagine the latitudes in this area that are 1/3 miles in distance, 1/4 miles in distance, 1/5 miles, 1/6 miles, and so on. If you are at any of these latitudes and you walk exactly one mile east, you will end up exactly where you started. Thus, any point that is one mile north of ANY of these latitudes is another one of the points you might have started at, since you'll walk one mile south, then one mile east and end up where you started your eastward walk, and finally, one mile north back to where you started.

Jack and Joe were on vacation and driving along a deserted country road from the town of Kaysville to the town of Lynnsville. They came to a multiple fork in the road. The sign post had been knocked down and they were faced with choosing one of five different directions. Since they had left their map at the last gas station and there was no one around to ask, how could Jack and Joe find their way to Lynnsville?

They need to stand the signpost up so that the arm reading Kaysville points in the direction of Kaysville, the town they had just come from. With one arm pointing the correct way, the other arms will also point in the right directions.

A monk leaves at sunrise and walks on a path from the front door of his monastery to the top of a nearby mountain. He arrives at the mountain summit exactly at sundown. The next day, he rises again at sunrise and descends down to his monastery, following the same path that he took up the mountain.
Assuming sunrise and sunset occured at the same time on each of the two days, prove that the monk must have been at some spot on the path at the same exact time on both days.

Imagine that instead of the same monk walking down the mountain on the second day, that it was actually a different monk. Let's call the monk who walked up the mountain monk A, and the monk who walked down the mountain monk B. Now pretend that instead of walking down the mountain on the second day, monk B actually walked down the mountain on the first day (the same day monk A walks up the mountain).
Monk A and monk B will walk past each other at some point on their walks. This moment when they cross paths is the time of day at which the actual monk was at the same point on both days. Because in the new scenario monk A and monk B MUST cross paths, this moment must exist.

You are standing in a house in the middle of the countryside. There is a small hole in one of the interior walls of the house, through which 100 identical wires are protruding.
From this hole, the wires run underground all the way to a small shed exactly 1 mile away from the house, and are protruding from one of the shed's walls so that they are accessible from inside the shed.
The ends of the wires coming out of the house wall each have a small tag on them, labeled with each number from 1 to 100 (so one of the wires is labeled "1", one is labeled "2", and so on, all the way through "100"). Your task is to label the ends of the wires protruding from the shed wall with the same number as the other end of the wire from the house (so, for example, the wire with its end labeled "47" in the house should have its other end in the shed labeled "47" as well).
To help you label the ends of the wires in the shed, there are an unlimited supply of batteries in the house, and a single lightbulb in the shed. The way it works is that in the house, you can take any two wires and attach them to a single battery. If you then go to the shed and touch those two wires to the lightbulb, it will light up. The lightbulb will only light up if you touch it to two wires that are attached to the same battery. You can use as many of the batteries as you want, but you cannot attach any given wire to more than one battery at a time. Also, you cannot attach more than two wires to a given battery at one time. (Basically, each battery you use will have exactly two wires attached to it). Note that you don't have to attach all of the wires to batteries if you don't want to.
Your goal, starting in the house, is to travel as little distance as possible in order to label all of the wires in the shed.
You tell a few friends about the task at hand.
"That will require you to travel 15 miles!" of of them exclaims.
"Pish posh," yells another. "You'll only have to travel 5 miles!"
"That's nonsense," a third replies. "You can do it in 3 miles!"
Which of your friends is correct? And what strategy would you use to travel that number of miles to label all of the wires in the shed?

Believe it or not, you can do it travelling only 3 miles!
The answer is rather elegant. Starting from the house, don't attach wires 1 and 2 to any batteries, but for the remaining wires, attach them in consecutive pairs to batteries (so attach wires 3 and 4 to the same battery, attach wires 5 and 6 to the same battery, and so on all the way through wires 99 and 100).
Now travel 1 mile to the shed, and using the lightbulb, find all pairs of wires that light it up. Put a rubberband around each pair or wires that light up the lightbulb. The two wires that don't light up any lightbulbs are wires 1 and 2 (though you don't know yet which one of them is wire 1 and which is wire 2). Put a rubberband around this pair of wires as well, but mark it so you remember that they are wires 1 and 2.
Now go 1 mile back to the house, and attach odd-numbered wires to batteries in the following pairs: (1 and 3), (5 and 7), (9 and 11), and so on, all the way through (97 and 99).
Similarly, attach even-numbered wires to batteries in the following pairs: (4 and 6), (8 and 10), (12 and 14), and so on, all the way through (96 and 98).
Note that in this round, we didn't attach wire 2 or wire 100 to any batteries.
Finally, travel 1 mile back to the shed. You're now in a position to label all of the wires here.
First, remember we know the pair of wires that are, collectively, wires 1 and 2. So test wires 1 and 2 with all the other wires to see what pair lights up the lightbulb. The wire from wires 1 and 2 that doesn't light up the bulb is wire 2 (which, remember, we didn't connect to a battery), and the other is wire 1, so we can label these as such. Furthermore, the wire that, with wire 1, lights up a lightbulb, is wire 3 (remember how we connected the wires this round).
Now, the other wire in the rubber band with wire 3 is wire 4 (we know this from the first round), and the wire that, with wire 4, lights up the lightbulb, is wire 6 (again, because of how we connected the wires to batteries this round). We can continue labeling batteries this way (next we'll label wire 7, which is rubber-banded to wire 6, and then we'll label wire 9, which lights up the lightbulb with wire 7, and so on). At the end, we'll label wire 97, and then wire 99 (which lights up the lightbulb with wire 97), and finally wire 100 (which isn't connected to a battery this round, but is rubber-banded to wire 99).
And we're done, having travelled only 3 miles!

On the first day they cover one quarter of the total distance.
The next day they cover one quarter of what is left.
The following day they cover two fifths of the remainder and on the fourth day half of the remaining distance.
The group now have 14 miles left, how many miles have they walked?

We travelled the sea far and wide. At one time, two of my sailors were standing on opposite sides of the ship. One was looking west and the other one east. And at the same time, they could see each other clearly. How can that be possible?

The sailors had their backs against either ends of the ship.

Swaff was traveling in an elevator, being cool, when he suddenly heard the cord supporting the elevator snap. Being the cool guy that he is, he knew of a myth where if you could jump at the right time, you could possibly be able to survive a plunge in an elevator.
Now, when Swaff was a boy, he spent all of his math classes making fun of his female teacher's moustache. He never paid attention, so he was a tad bit slow in his mathematical calculations. He did, however, have a very bizarre talent, in which he could tell the exact speed he was traveling. That came in pretty lucky today.
Swaff knew he was falling at an even rate of 50 miles per hour. When the cord snapped, he was exactly 110 feet above the ground. He knew that he must jump at the right time to have any hopes of surviving.
Now, after doing the math, please tell me when Swaff jumped.

He never did. By the time Swaff figured out that he would have to jump in 1.5 seconds, he would already be dead. Not even the best of mathematicians could do all the math needed in 1 and half seconds. Swaff fell to his death.

As I was going to St. Ives
I met a man with seven wives
The seven wives had seven sacks
The seven sacks had seven cats
The seven cats had seven kits
Kits, cats, sacks and wives
How many were going to St. Ives?

One person is going to St. Ives (the narrator). Because the narrator "met" all of the others mentioned in the poem, this implies that they walked past each other in opposite directions, and thus none of the wives, sacks, cats, or kits was actually headed to St. Ives.
If you (like many) think this answer is a bit silly, you can assume that all the people, sacks, and animals mentioned were heading for St. Ives. In this case, we would have 1 narrator + 1 man + 7 wives + 49 sacks + 343 cats + 2401 kits = 2802 total going to St. Ives. However, this isn't the traditional answer.

A man named Stewart is traveling all over the world. First he travels to Cape Town in South Africa. Then to Jakarta in Indonesia. Then to Canberra in Australia. Then to Rome in Italy. Then to Panama City in Panama. Where does he travel next?

Santiago in Chile. He travels to each continent in alphabetical order then to the capital of the country that has the most southern latitude.