Riddle #640


Lost in the desert

Jack and Joe were on vacation and driving along a deserted country road from the town of Kaysville to the town of Lynnsville. They came to a multiple fork in the road. The sign post had been knocked down and they were faced with choosing one of five different directions. Since they had left their map at the last gas station and there was no one around to ask, how could Jack and Joe find their way to Lynnsville?
They need to stand the signpost up so that the arm reading Kaysville points in the direction of Kaysville, the town they had just come from. With one arm pointing the correct way, the other arms will also point in the right directions.
93.70 %
40 votes

Similar riddles

See also best riddles or new riddles.


Country hidden in the paragraph

What country is hidden in the paragraph below? As defendants, we deny all involvement in the unscrupulous dealings which have come to light in the recent government investigation.
93.70 %
40 votes


The Circular Lake

A swan sits at the center of a perfectly circular lake. At an edge of the lake stands a ravenous monster waiting to devour the swan. The monster can not enter the water, but it will run around the circumference of the lake to try to catch the swan as soon as it reaches the shore. The monster moves at 4 times the speed of the swan, and it will always move in the direction along the shore that brings it closer to the swan the quickest. Both the swan and the the monster can change directions in an instant. The swan knows that if it can reach the lake's shore without the monster right on top of it, it can instantly escape into the surrounding forest. How can the swan succesfully escape?
Assume the radius of the lake is R feet. So the circumference of the lake is (2*pi*R). If the swan swims R/4 feet, (or, put another way, 0.25R feet) straight away from the center of the lake, and then begins swimming in a circle around the center, then it will be able to swim around this circle in the exact same amount of time as the monster will be able to run around the lake's shore (since this inner circle's circumference is 2*pi*(R/4), which is exactly 4 times shorter than the shore's circumference). From this point, the swan can move a millimeter inward toward the lake's center, and begin swimming around the center in a circle from this distance. It is now going around a very slightly smaller circle than it was a moment ago, and thus will be able to swim around this circle FASTER than the monster can run around the shore. The swan can keep swimming around this way, pulling further away each second, until finally it is on the opposite side of its inner circle from where the monster is on the shore. At this point, the swan aims directly toward the closest shore and begins swimming that way. At this point, the swan has to swim [0.75R feet + 1 millimeter] to get to shore. Meanwhile, the monster will have to run R*pi feet (half the circumference of the lake) to get to where the swan is headed. The monster runs four times as fast as the swan, but you can see that it has more than four times as far to run: [0.75R feet + 1 millimeter] * 4 < R*pi [This math could actually be incorrect if R were very very small, but in that case we could just say the swan swam inward even less than a millimeter, and make the math work out correctly.] Because the swan has less than a fourth of the distance to travel as the monster, it will reach the shore before the monster reaches where it is and successfully escape.
93.70 %
40 votes


Land of Brainopia

In the land of Brainopia, there are three races of people: Mikkos, who tell the truth all the time, Kikkos, who always tell lies, and Zikkos, who tell alternate false and true statements, in which the order is not known (i.e. true, false, true or false, true, false). When interviewing three Brainopians, a foreigner received the following statements: Person 1: I am a Mikko. Person 2: I am a Kikko. Person 3: a. They are both lying. b. I am a Zikko. Can you help the very confused foreigner determine who is who, assuming each person represents a different race?
Person 1 is a Miko. Person 2 is a Ziko. Person 3 is a Kikko.
93.98 %
42 votes


Brown house

In a one storey brown house, there was a brown person with a brown computer, brown telephone, and brown chair. He also had a brown cat and a brown fish – Just about everything was brown – What colour was the stairs?
As it was a one-storey house – there were no stairs.
93.39 %
38 votes


Horse travels

A horse travels a certain distance each day. Strangely enough, two of its legs travel 30 miles each day and the other two legs travel nearly 31 miles. It would seem that two of the horse's legs must be one mile ahead of the other two legs, but of course this can't be true. Since the horse is normal, how is this situation possible?
The horse operates the mill and travels in a circular clockwise direction. The two outside legs will travel a greater distance than the inside ones.
90.47 %
44 votes


Cards in the dark

You are standing in a pitch-dark room. A friend walks up and hands you a normal deck of 52 cards. He tells you that 13 of the 52 cards are face-up, the rest are face-down. These face-up cards are distributed randomly throughout the deck. Your task is to split up the deck into two piles, using all the cards, such that each pile has the same number of face-up cards. The room is pitch-dark, so you can't see the deck as you do this. How can you accomplish this seemingly impossible task?
Take the first 13 cards off the top of the deck and flip them over. This is the first pile. The second pile is just the remaining 39 cards as they started. This works because if there are N face-up cards in within the first 13 cards, then there will be (13 - N) face up cards in the remaining 39 cards. When you flip those first 13 cards, N of which are face-up, there will now be N cards face-down, and therefore (13 - N) cards face-up, which, as stated, is the same number of face-up cards in the second pile.
94.36 %
45 votes



How could the cowboy travel on friday, then sleep two days and then travel back home on friday.
If the horse was named Friday.
94.48 %
46 votes


Prisoner sentenced to death

You are a prisoner sentenced to death. The Emperor offers you a chance to live by playing a simple game. He gives you 50 black marbles, 50 white marbles and 2 empty bowls. He then says, "Divide these 100 marbles into these 2 bowls. You can divide them any way you like as long as you use all the marbles. Then I will blindfold you and mix the bowls around. You then can choose one bowl and remove ONE marble. If the marble is WHITE you will live, but if the marble is BLACK... you will die." How do you divide the marbles up so that you have the greatest probability of choosing a WHITE marble? HINT: The answer does not guarantee 100% you will chose a white marble, but you have a much better chance.
Place 1 white marble in the bowl, and place the rest of the marbles in the other bowl (49 whites, and 50 blacks). This way you begin a 50/50 chance of choosing the bowl with just one white marble, therefore life! BUT even if you choose the other bowl, you still have almost a 50/50 chance at picking one of the 49 white marbles.
90.47 %
44 votes


Most renowned surgeon

John Heysham Gibbon was most renowned surgeon of 1940-1970. More than 90% of his surgeries he performed are highly successful and still almost all of his patients die.
The surgery was performed way back, by now approx 90% of them have died by old age.
92.86 %
35 votes


Two Hourglasses

You have two sand hourglasses, one that measures exactly 4 minutes and one that measures exactly 7 minutes. You need to measure out exactly 2 minutes to boil an egg. Using only these two hourglasses, how can you measure out exactly 2 minutes to boil your egg?
Flip over both hourglasses at the same time. After 4 minutes, the 4-minute hourglass will be done, and there will be 3 minutes left in the 7-minute hourglass. Immediately flip the 4-minute hourglass over again. After 3 more minutes, the 7-minute hourglass will be done, and there will be exactly 1 minute left in the 4-minute hourglass. Immediately flip the 7-minute hourglass over again. After 1 more minute, the 4-minute hourglass will be done again, and there will be exactly 6 minutes left in the 7-minute hourglass. Immediately flip over the 4-minute hourglass. After 4 more minutes, the 4-minute hourglass will be done again, and there will be exactly 2 minutes left in the 7-minute hourglass. At this point, put your egg in the boiling water. When the 7-minute hourglass is done, it will have been exactly 2 more minutes, and your egg will have boiled just right.
94.59 %
47 votes