In olden days you are a clever thief charged with treason against the king and sentenced to death.
But the king decides to be a little lenient and lets you choose your own way to die.
What way should you choose?
Remember, you're clever!

Once upon a time there was a dad and 3 kids. When the kids were adults, the dad was old and Death came to take the dad. The first son, who became a lawyer, begged Death to let the dad live a few more years. Death agreed. When Death came back, the second son, who became a doctor begged Death to let his father live a few more days. Death agreed. When Death came back the third son, who became a priest begged Death to let the dad live till that candle wick burned out and he pointed to a candle. Death agreed. The third son knew Death wouldn't come back, and he didn't. Why not?

The third son went over and blew out the candle after Death left because the son said "till the candle wick burns out", not "till the candle burns out".

You have a basket of infinite size (meaning it can hold an infinite number of objects). You also have an infinite number of balls, each with a different number on it, starting at 1 and going up (1, 2, 3, etc...).
A genie suddenly appears and proposes a game that will take exactly one minute. The game is as follows: The genie will start timing 1 minute on his stopwatch. Where there is 1/2 a minute remaining in the game, he'll put balls 1, 2, and 3 into the basket. At the exact same moment, you will grab a ball out of the basket (which could be one of the balls he just put in, or any ball that is already in the basket) and throw it away.
Then when 3/4 of the minute has passed, he'll put in balls 4, 5, and 6, and again, you'll take a ball out and throw it away.
Similarly, at 7/8 of a minute, he'll put in balls 7, 8, and 9, and you'll take out and throw away one ball.
Similarly, at 15/16 of a minute, he'll put in balls 10, 11, and 12, and you'll take out and throw away one ball.
And so on....After the minute is up, the genie will have put in an infinite number of balls, and you'll have thrown away an infinite number of balls.
Assume that you pull out a ball at the exact same time the genie puts in 3 balls, and that the amount of time this takes is infinitesimally small.
You are allowed to choose each ball that you pull out as the game progresses (for example, you could choose to always pull out the ball that is divisible by 3, which would be 3, then 6, then 9, and so on...).
You play the game, and after the minute is up, you note that there are an infinite number of balls in the basket.
The next day you tell your friend about the game you played with the genie. "That's weird," your friend says. "I played the exact same game with the genie yesterday, except that at the end of my game there were 0 balls left in the basket."
How is it possible that you could end up with these two different results?

Your strategy for choosing which ball to throw away could have been one of many. One such strategy that would leave an infinite number of balls in the basket at the end of the game is to always choose the ball that is divisible by 3 (so 3, then 6, then 9, and so on...). Thus, at the end of the game, any ball of the format 3n+1 (i.e. 1, 4, 7, etc...), or of the format 3n+2 (i.e. 2, 5, 8, etc...) would still be in the basket. Since there will be an infinite number of such balls that the genie has put in, there will be an infinite number of balls in the basket.
Your friend could have had a number of strategies for leaving 0 balls in the basket. Any strategy that guarantees that every ball n will be removed after an infinite number of removals will result in 0 balls in the basket.
One such strategy is to always choose the lowest-numbered ball in the basket. So first 1, then 2, then 3, and so on. This will result in an empty basket at the game's end. To see this, assume that there is some ball in the basket at the end of the game. This ball must have some number n. But we know this ball was thrown out after the n-th round of throwing balls away, so it couldn't be in there. This contradiction shows that there couldn't be any balls left in the basket at the end of the game.
An interesting aside is that your friend could have also used the strategy of choosing a ball at random to throw away, and this would have resulted in an empty basket at the end of the game. This is because after an infinite number of balls being thrown away, the probability of any given ball being thrown away reaches 100% when they are chosen at random.

Two trains are traveling toward each other on the same track, each at 60 miles per hour. When they are exactly 120 miles apart, a fly takes off from the front of one of the trains, flying toward the other train at a constant rate of 100 miles per hour. When the fly reaches the other train, it instantly changes directions and starts flying toward the other train, still at 100 miles per hour. It keeps doing this back and forth until the trains finally collide.
If you add up all the distances back and forth that the fly has travelled, how much total distance has the fly travelled when the trains finally collide?

The fly has travelled exactly 100 miles. We can figure this out using some simple math. Becuase the trains are 120 miles apart when the fly takes off, and are travelling at 60 mph each, they will collide in exactly 1 hour. This gives the fly exactly 1 hour of flying time, going at a speed of 100 miles per hour. Thus, the fly will travel 100 miles in this hour.

You are driving a car on one big stormy night. You pass a bus station. There are three people who are waiting for the bus: One old sick lady who is dying, One doctor who saved your life before, and one lady who is someone you have been dreaming to be with. You can only take one passenger, which one will you choose?

Give the car key to the doctor, let the doctor take the old lady to the hospital and stay to wait for the bus with the lady of your dreams!

An archeologist claims he found a Roman coin dated 46 B.C. in Egypt. How much should Louvre Museum pay for the coin?
Note: Roman coins can really be found in Egypt

Nothing. That coin is as phony as a three dollar bill. In 46 B.C., they wouldn't have known how many years before Christ it was.

Consider the following explanation for why 1=2:
1. Start out Let y = x
2. Multiply through by x xy = x2
3. Subtract y2 from each side xy - y2 = x2 - y2
4. Factor each side y(x-y) = (x+y)(x-y)
5. Divide both sides by (x-y) y = x+y
6. Divide both sides by y y/y = x/y + y/y
7. And so... 1 = x/y + 1
8. Since x=y, x/y = 1 1 = 1 + 1
8. And so... 1 = 2
How is this possible?

Step 5 is invalid, because we are dividing by (x-y), and since x=y, we are thus dividing by 0. This is an invalid mathematical operation (division by 0), and so by not followinng basic mathematical rules, we are able to get strange results like these.

Note: This riddle must be done IN YOUR HEAD ONLY and NOT using paper and a pen.
Take 1000 and add 40 to it.
Now add another 1000.
Now add 30.
Another 1000.
Now add 20.
Now add another 1000.
Now add 10.
What is the total?

The answer is 4100, check it out on a calculator. Did you think it was 5000? Most people add the 100 as 1000 by mistake.

Three playing cards in a row. Can you name them with these clues? There is a two to the right of a king. A diamond will be found to the left of a spade. An ace is to the left of a heart. A heart is to the left of a spade. Now, identify all three cards.

Two soldiers, William and Ethan, are assigned to guard a bridge, which connects the West and East sides of the Great Kingdom. Each soldier is ordered to stand at an end of the bridge to make sure no criminals cross.
On one side of the bridge stands William, watching over the West side of the kingdom, and making sure no shady characters try to cross the bridge.
Ethan stands on the other side of the bridge, facing the East side of the kingdom with his rifle at the ready in case any criminals try to pass across.
"Any criminals today?" William asks.
Ethan rolls his eyes. "What do you think?" he asks.
"You roll your eyes too much," William says.
How could William tell that Ethan was rolling his eyes?

William is on the east side of the bridge, facing the West side of the kingdom, while Ethan is on the west side of the bridge, facing the East side of the kingdom. So William and Ethan are facing each other, and can see each other's faces.