Best long riddles

logictrickyinterview

The Pope, Beyonce, POTUS, and Bill Gates are on the same plane. There are only 3 parachutes left for the 4 of them. POTUS says: "As the President, I think I should have the right to have a parachute, because I rule millions of people in the greatest nation of all." Beyonce says: "As one of the greatest singers of all-time, I think I should deserve to be safe. I bring tears and laughter to millions of people, and I'm an important contributor to pop music." Bill Gates says: "As one of the richest successful company owners, I think I should live because I'm on top of the economics cycle, creating jobs and incomes for millions of people. I am a wealthy and intelligent man." Finally, the Pope says: "I'm an old, religious man. I lived a life that's full, I helped millions of people find their way through God, I'm ready to let go of a parachute and to face my fate." Which one of them will abandon the parachute and die?
Did I ever mention that the plane was crashing? No one's gonna die.
75.12 %
138 votes
cleanlogicsimple

A young peasant wanted to marry the king's daughter. The king didn't like the idea of his daughter marrying a peasant, but he wanted to appear fair in front of his subjects. The king said that he would put two pieces of paper into a hat, one reading "exile" and the other reading "marriage". Later that day, the peasant overheard the king saying that both pieces of paper would read "exile", thus ensuring that the peasant would be out of his way for good. The peasant remained undaunted and, as arranged, arrived at the king's court where a large crown gathered for the big event. The peasant then did something that assured him the hand of the king's daughter. What did he do?
The peasant picked one of the pieces of paper and tore it up. He then asked the kind to show him the other piece of paper which, of course, said EXILE. The king, not wishing to appear fraudulent in front of his subjects, granted that the piece of paper the peasant had picked must have said MARRIAGE.
75.08 %
124 votes
logicmath

You have a basket of infinite size (meaning it can hold an infinite number of objects). You also have an infinite number of balls, each with a different number on it, starting at 1 and going up (1, 2, 3, etc...). A genie suddenly appears and proposes a game that will take exactly one minute. The game is as follows: The genie will start timing 1 minute on his stopwatch. Where there is 1/2 a minute remaining in the game, he'll put balls 1, 2, and 3 into the basket. At the exact same moment, you will grab a ball out of the basket (which could be one of the balls he just put in, or any ball that is already in the basket) and throw it away. Then when 3/4 of the minute has passed, he'll put in balls 4, 5, and 6, and again, you'll take a ball out and throw it away. Similarly, at 7/8 of a minute, he'll put in balls 7, 8, and 9, and you'll take out and throw away one ball. Similarly, at 15/16 of a minute, he'll put in balls 10, 11, and 12, and you'll take out and throw away one ball. And so on....After the minute is up, the genie will have put in an infinite number of balls, and you'll have thrown away an infinite number of balls. Assume that you pull out a ball at the exact same time the genie puts in 3 balls, and that the amount of time this takes is infinitesimally small. You are allowed to choose each ball that you pull out as the game progresses (for example, you could choose to always pull out the ball that is divisible by 3, which would be 3, then 6, then 9, and so on...). You play the game, and after the minute is up, you note that there are an infinite number of balls in the basket. The next day you tell your friend about the game you played with the genie. "That's weird," your friend says. "I played the exact same game with the genie yesterday, except that at the end of my game there were 0 balls left in the basket." How is it possible that you could end up with these two different results?
Your strategy for choosing which ball to throw away could have been one of many. One such strategy that would leave an infinite number of balls in the basket at the end of the game is to always choose the ball that is divisible by 3 (so 3, then 6, then 9, and so on...). Thus, at the end of the game, any ball of the format 3n+1 (i.e. 1, 4, 7, etc...), or of the format 3n+2 (i.e. 2, 5, 8, etc...) would still be in the basket. Since there will be an infinite number of such balls that the genie has put in, there will be an infinite number of balls in the basket. Your friend could have had a number of strategies for leaving 0 balls in the basket. Any strategy that guarantees that every ball n will be removed after an infinite number of removals will result in 0 balls in the basket. One such strategy is to always choose the lowest-numbered ball in the basket. So first 1, then 2, then 3, and so on. This will result in an empty basket at the game's end. To see this, assume that there is some ball in the basket at the end of the game. This ball must have some number n. But we know this ball was thrown out after the n-th round of throwing balls away, so it couldn't be in there. This contradiction shows that there couldn't be any balls left in the basket at the end of the game. An interesting aside is that your friend could have also used the strategy of choosing a ball at random to throw away, and this would have resulted in an empty basket at the end of the game. This is because after an infinite number of balls being thrown away, the probability of any given ball being thrown away reaches 100% when they are chosen at random.
75.03 %
77 votes
cleanpoemswhat am I

For thousands of years, Seen only in tale. The wind as a sail, For one thunderous gale. Shiny stores rich in lore, The burning temper, like Earth's core. What am I?
Dragon
75.02 %
178 votes
logicsimpleclever

A man was to be sentenced, and the judge told him, "You may make a statement. If it is true, I'll sentence you to four years in prison. If it is false, I'll sentence you to six years in prison." After the man made his statement, the judge decided to let him go free.What did the man say?
He said, "You'll sentence me to six years in prison." If it was true, then the judge would have to make it false by sentencing him to four years. If it was false, then he would have to give him six years, which would make it true. Rather than contradict his own word, the judge set the man free.
75.00 %
119 votes
logicsimple

There are 3 switches outside of a room, all in the 'off' setting. One of them controls a lightbulb inside the room, the other two do nothing. You cannot see into the room, and once you open the door to the room, you cannot flip any of the switches any more. Before going into the room, how would you flip the switches in order to be able to tell which switch controls the light bulb?
Flip the first switch and keep it flipped for five minutes. Then unflip it, and flip the second switch. Go into the room. If the lightbulb is off but warm, the first switch controls it. If the light is on, the second switch controls it. If the light is off and cool, the third switch controls it.
74.97 %
105 votes
cleanlogic

What 8 letter word can have a letter taken away and it still makes a word. Take another letter away and it still makes a word. Keep on doing that until you have one letter left. What is the word?
The word is starting! starting, staring, string, sting, sing, sin, in, i.
74.94 %
164 votes
logiccleverclean

Last week, the local Primary school was visited by the Government School Inspector who was there to check that teachers were performing well in their respective classes. He was very impressed with one particular teacher. The Inspector noticed that each time the class teacher asked a question, every child in the class put up their hands enthusiastically to answer it. More surprisingly, whilst the teacher chose a different child to answer the questions each time, the answers were always correct. Why would this be?
The children were instructed to ALL raise their hands whenever a question was asked. It did not matter whether they knew the answer or not. If they did not know the answer, however, they would raise their LEFT hand. If they knew the answer, they would raise their RIGHT hand. The class teacher would choose a different child each time, but always the ones who had their RIGHT hand raised.
74.94 %
155 votes
cleanlogic

You are standing next to three switches. You know these switches belong to three bulbs in a room behind a closed door – the door is tight closed, and heavy which means that it's absolutely impossible to see if any bulb is on or not. All three switches are now in position off. You can do whatever you want with the switches and when you are finished you open the door and go into the room. While in there you have to tell which switch belongs to which bulb. How will you do that?
Turn on the first switch and wait for a while. Turn off the first one and turn on the second. Go into the room. One bulb is shining, the second bulb is hot and the third one nothing.
74.89 %
100 votes
<<<2345
MORE RIDDLES >
Page 2 of 36.