One company had two factories, in different parts of the country, that were making the same style of shoes. In both factories, workers were stealing shoes. How, without using any security, could that company stop the stealing?

Make one factory make the left shoe, and the other make the right shoe.

Your friend pulls out a perfectly circular table and a sack of quarters, and proposes a game.
"We'll take turns putting a quarter on the table," he says. "Each quarter must lay flat on the table, and cannot sit on top of any other quarters. The last person to successfully put a quarter on the table wins."
He gives you the choice to go first or second. What should you do, and what should your strategy be to win?

You should go first, and put a quarter at the exact center of the table.
Then, each time your opponent places a quarter down, you should place your next quarter in the symmetric position on the opposite side of the table.
This will ensure that you always have a place to set down our quarter, and eventually your oppponent will run out of space.

While mixing sand, gravel, and cement for the foundation of a house, a worker noticed a small bird hopping along the top of the foundation wall. The bird misjudged a hop and fell down one of the holes between the blocks. The bird was down too far for anyone to reach it and the hole was too small for it to fly out of. Someone suggested using two sticks to reach down into the hole and pull the bird out, but this idea was rejected for fear it would injure the fragile bird. What would be the easiest way to get the bird out of the hole without injuring it?

Since they had plenty of sand available, they could pour a little at a time into the hole. The bird would constantly keep shifting its position so that it stood on the rising sand.

Sam is talking to his lawyer in jail. They are very upset because the judge has refused to grant bail. At the end of the conversation Sam is allowed to leave the jail. Why?

Sam is visiting his lawyer, who had been arrested and jailed.

A murdered is condemned to death.
He has to choose between three rooms.
The first is full of raging fires, the second is full of assassins with loaded guns, and the third is full of lions that haven't eaten in 3 years.
Which room is safest for him?

The third room. Lions that haven't eaten in three years are dead.

A man has two ropes of varying thickness (Those two ropes are not identical, they aren’t the same density nor the same length nor the same width). Each rope burns in 60 minutes. He actually wants to measure 45 mins. How can he measure 45 mins using only these two ropes.
He can’t cut the one rope in half because the ropes are non-homogeneous and he can’t be sure how long it will burn.

He will burn one of the rope at both the ends and the second rope at one end. After half an hour, the first one burns completely and at this point of time, he will burn the other end of the second rope so now it will take 15 mins more to completely burn. so total time is 30+15 i.e. 45mins.

There is a small town in the midwest with exactly 2 barbershops, one on each side of town. The barbershop on the west side of town is pristine. Its floors are spotless, the windows are always perfectly clear, and the air always smells fresh. The barber has a friendly smile, shined shoes, a well-groomed head of hair, and a fancy shirt. The barbershop on the east side of town is a mess. Its floors and windows are dirty, and the air smells of garbage. The barber always has a grimace on his face. His skin is oily, his hair is short and ragged, and he has food on his clothes all the time.
A man travelling through the town realizes he needs a haircut. Knowing the stories of the two barbers, the man decides to go to the dirty barbershop on the east side of town.
Why does he do this?

Because there are only two barbers in the town, the barbers must cut each-other's hair. The barber on the west side of town has a nice haircut, so the east-side barber must be a good barber. On the other hand, the barber on the east side of town has ragged hair, meaning the west-side barber must not be very good. So the man goes to the east-side barber to get a better haircut.

There are 1 million closed school lockers in a row, labeled 1 through 1,000,000.
You first go through and flip every locker open.
Then you go through and flip every other locker (locker 2, 4, 6, etc...). When you're done, all the even-numbered lockers are closed.
You then go through and flip every third locker (3, 6, 9, etc...). "Flipping" mean you open it if it's closed, and close it if it's open. For example, as you go through this time, you close locker 3 (because it was still open after the previous run through), but you open locker 6, since you had closed it in the previous run through.
Then you go through and flip every fourth locker (4, 8, 12, etc...), then every fifth locker (5, 10, 15, etc...), then every sixth locker (6, 12, 18, etc...) and so on. At the end, you're going through and flipping every 999,998th locker (which is just locker 999,998), then every 999,999th locker (which is just locker 999,999), and finally, every 1,000,000th locker (which is just locker 1,000,000).
At the end of this, is locker 1,000,000 open or closed?

Locker 1,000,000 will be open.
If you think about it, the number of times that each locker is flipped is equal to the number of factors it has. For example, locker 12 has factors 1, 2, 3, 4, 6, and 12, and will thus be flipped 6 times (it will end be flipped when you flip every one, every 2nd, every 3rd, every 4th, every 6th, and every 12th locker). It will end up closed, since flipping an even number of times will return it to its starting position. You can see that if a locker number has an even number of factors, it will end up closed. If it has an odd number of factors, it will end up open.
As it turns out, the only types of numbers that have an odd number of factors are squares. This is because factors come in pairs, and for squares, one of those pairs is the square root, which is duplicated and thus doesn't count twice as a factor. For example, 12's factors are 1 x 12, 2 x 6, and 3 x 4 (6 total factors). On the other hand, 16's factors are 1 x 16, 2 x 8, and 4 x 4 (5 total factors).
So lockers 1, 4, 9, 16, 25, etc... will all be open. Since 1,000,000 is a square number (1000 x 1000), it will be open as well.

With pointed fangs I sit and wait; with piercing force I crunch out fate; grabbing victims, proclaiming might; physically joining with a single bite. What am I?

Two men working at a construction site were up for a challenge, and they were pretty mad at each other.
Finally, at lunch break, they confronted one another.
One man, obviously stronger, said "See that wheelbarrow? I'm willin' to bet $100 (that's all I have in my wallet here) that you can't wheel something to that cone and back that I can't do twice as far. Do you have a bet?"
The other man, too dignified to decline, shook his hand, but he had a plan formulating.
He looked at the objects lying around: a pile of 400 bricks, a steel beam, the 10 men that had gathered around to watch, his pickup truck, a stack of ten bags of concrete mix, and then he finalized his plan.
"All right," he said, and revealed his object.
That night, the strong man went home thoroughly teased and $100 poorer.
What did the other man choose?

He looked the man right in the eye and said "get in."