Best long riddles

logicsimpleclean

You're standing in front of a room with one lightbulb inside of it. You cannot see if it is on or off. Outside the room, there are 3 switches in the off positions. You may turn the switches any way you want to. You stop turning the switches, enter the room and know which switch controls the lightbulb. How?
You turn 2 switches "on" and leave 1 switch "off" and wait about a minute. Then enter the room, but just before you enter, turn one switch from "on" to "off". Once in the room, feel the lightbulb - if it is warm, but off, it has to be the last switch you turned off. If it is on, it has to be the switch left on. If it is cold and is off, it has to be the switch you left in the off position.
75.53 %
98 votes
logicmathsimplecleanclever

There are 100 ants on a board that is 1 meter long, each facing either left or right and walking at a pace of 1 meter per minute. The board is so narrow that the ants cannot pass each other; when two ants walk into each other, they each instantly turn around and continue walking in the opposite direction. When an ant reaches the end of the board, it falls off the edge. From the moment the ants start walking, what is the longest amount of time that could pass before all the ants have fallen off the plank? You can assume that each ant has infinitely small length.
The longest amount of time that could pass would be 1 minute. If you were looking at the board from the side and could only see the silhouettes of the board and the ants, then when two ants walked into each other and turned around, it would look to you as if the ants had walked right by each other. In fact, the effect of two ants walking into each other and then turning around is essentially the same as two ants walking past one another: we just have two ants at that point walking in opposite directions. So we can treat the board as if the ants are walking past each other. In this case, the longest any ant can be on the board is 1 minute (since the board is 1 meter long and the ants walk at 1 meter per minute). Thus, after 1 minute, all the ants will be off the board.
75.38 %
83 votes
logicstorycleansimple

A wise man lived on a hill above a small town. The townspeople often approached him to solve their difficult problems and riddles. One day, two lads decided to fool him. They took a dove and set off up the hill. Standing before him, one of the lads said "Tell me, wise man, is the dove I hold behind my back dead or alive?" The man smiled and said "I cannot answer your question correctly". Even though the wise man knew the condition of the dove, why wouldn't he state whether it was dead or alive?
The man told the two lads, "If I say the dove is alive, you will the bird and show me that it is dead. If I say that it is dead, you will release the dove and it will fly away. So you see I cannot answer your question. Search: Schrödinger's cat
75.36 %
102 votes
cleanlogicwhat am I

What word in the English language does the following: the first two letters signify a male, the first three letters signify a female, the first four letters signify a great man, the first six letters signify a drug, while the entire world signifies a great woman. What is the word?
Heroine
75.36 %
102 votes
cleanfunnytricky

A boy was at a carnival and went to a booth where a man said to the boy, "If I write your exact weight on this piece of paper then you have to give me $50, but if I cannot, I will pay you $50." The boy looked around and saw no scale so he agrees, thinking no matter what the carny writes he'll just say he weighs more or less. In the end the boy ended up paying the man $50. How did the man win the bet?
The man did exactly as he said he would and wrote "your exact weight" on the paper.
75.33 %
116 votes
cleanlogic

Jake and his friend Paco had very famous challenge sessions at their school. One would suggest something they could do, and the other would prove it wrong somehow. One day, Jake surprised Paco by stating: "I can answer any question in the world." Sure that he would win the challenge, Paco accepted the task of proving it wrong. He wrote up a test full of impossible questions. After a while, Jake returned the test. Paco unbelievably lost the challenge and told Jake he could indeed answer any question. How did Jake win?
For all the impossible questions, Jake simply wrote "I don't know".
75.33 %
78 votes
logicmath

You have been given the task of transporting 3,000 apples 1,000 miles from Appleland to Bananaville. Your truck can carry 1,000 apples at a time. Every time you travel a mile towards Bananaville you must pay a tax of 1 apple but you pay nothing when going in the other direction (towards Appleland). What is highest number of apples you can get to Bananaville?
833 apples. Step one: First you want to make 3 trips of 1,000 apples 333 miles. You will be left with 2,001 apples and 667 miles to go. Step two: Next you want to take 2 trips of 1,000 apples 500 miles. You will be left with 1,000 apples and 167 miles to go (you have to leave an apple behind). Step three: Finally, you travel the last 167 miles with one load of 1,000 apples and are left with 833 apples in Bananaville.
75.33 %
78 votes
logicmath

You have a basket of infinite size (meaning it can hold an infinite number of objects). You also have an infinite number of balls, each with a different number on it, starting at 1 and going up (1, 2, 3, etc...). A genie suddenly appears and proposes a game that will take exactly one minute. The game is as follows: The genie will start timing 1 minute on his stopwatch. Where there is 1/2 a minute remaining in the game, he'll put balls 1, 2, and 3 into the basket. At the exact same moment, you will grab a ball out of the basket (which could be one of the balls he just put in, or any ball that is already in the basket) and throw it away. Then when 3/4 of the minute has passed, he'll put in balls 4, 5, and 6, and again, you'll take a ball out and throw it away. Similarly, at 7/8 of a minute, he'll put in balls 7, 8, and 9, and you'll take out and throw away one ball. Similarly, at 15/16 of a minute, he'll put in balls 10, 11, and 12, and you'll take out and throw away one ball. And so on....After the minute is up, the genie will have put in an infinite number of balls, and you'll have thrown away an infinite number of balls. Assume that you pull out a ball at the exact same time the genie puts in 3 balls, and that the amount of time this takes is infinitesimally small. You are allowed to choose each ball that you pull out as the game progresses (for example, you could choose to always pull out the ball that is divisible by 3, which would be 3, then 6, then 9, and so on...). You play the game, and after the minute is up, you note that there are an infinite number of balls in the basket. The next day you tell your friend about the game you played with the genie. "That's weird," your friend says. "I played the exact same game with the genie yesterday, except that at the end of my game there were 0 balls left in the basket." How is it possible that you could end up with these two different results?
Your strategy for choosing which ball to throw away could have been one of many. One such strategy that would leave an infinite number of balls in the basket at the end of the game is to always choose the ball that is divisible by 3 (so 3, then 6, then 9, and so on...). Thus, at the end of the game, any ball of the format 3n+1 (i.e. 1, 4, 7, etc...), or of the format 3n+2 (i.e. 2, 5, 8, etc...) would still be in the basket. Since there will be an infinite number of such balls that the genie has put in, there will be an infinite number of balls in the basket. Your friend could have had a number of strategies for leaving 0 balls in the basket. Any strategy that guarantees that every ball n will be removed after an infinite number of removals will result in 0 balls in the basket. One such strategy is to always choose the lowest-numbered ball in the basket. So first 1, then 2, then 3, and so on. This will result in an empty basket at the game's end. To see this, assume that there is some ball in the basket at the end of the game. This ball must have some number n. But we know this ball was thrown out after the n-th round of throwing balls away, so it couldn't be in there. This contradiction shows that there couldn't be any balls left in the basket at the end of the game. An interesting aside is that your friend could have also used the strategy of choosing a ball at random to throw away, and this would have resulted in an empty basket at the end of the game. This is because after an infinite number of balls being thrown away, the probability of any given ball being thrown away reaches 100% when they are chosen at random.
75.28 %
73 votes
cleansimplelogic

I heard of an invading, vanquishing army sweeping across the land, liquid-quick; conquering everything, quelling resistance. With it came darkness, dimming the light. Humans hid in their houses, while outside spears pierced, shattering stones walls. Uncountable soldiers smashed into the ground, but each elicited life as he died. When the army had vanished, advancing northward, the land was gree and growing, refresh.
Rainstorm.
75.28 %
73 votes