There are 100 ants on a board that is 1 meter long, each facing either left or right and walking at a pace of 1 meter per minute.
The board is so narrow that the ants cannot pass each other; when two ants walk into each other, they each instantly turn around and continue walking in the opposite direction. When an ant reaches the end of the board, it falls off the edge.
From the moment the ants start walking, what is the longest amount of time that could pass before all the ants have fallen off the plank? You can assume that each ant has infinitely small length.
The longest amount of time that could pass would be 1 minute.
If you were looking at the board from the side and could only see the silhouettes of the board and the ants, then when two ants walked into each other and turned around, it would look to you as if the ants had walked right by each other.
In fact, the effect of two ants walking into each other and then turning around is essentially the same as two ants walking past one another: we just have two ants at that point walking in opposite directions.
So we can treat the board as if the ants are walking past each other. In this case, the longest any ant can be on the board is 1 minute (since the board is 1 meter long and the ants walk at 1 meter per minute). Thus, after 1 minute, all the ants will be off the board.
A poor miller living with his daughter comes onto hard times and is not able to pay his rent. His evil landlord threatens to evict them unless the daughter marries him.
The daughter, not wanting to marry the landlord but fearing that her father won't be able to take being evicted, suggests the following proposition to the landlord. He will put two stones, one white and one black, into a bag in front of the rest of the townspeople. She will pick one stone out of the bag. If she picks the white stone, the landlord will forgive their debt and let them stay, but if she picks the black stone, she will marry the landlord, and her father will be evicted anyway.
The landlord agrees to the proposal. Everybody meets in the center of the town. The landlord picks up two stones to put in the bag, but the daughter notices that he secretly picked two black stones.
She is about to reveal his deception but realizes that this would embarrass him in front of the townspeople, and he would evict them. She quickly comes up with another plan. What can she do that will allow the landlord save face, while also ensuring that she and her father can stay and that she won't have to marry the landlord?
The daughter picks a stone out, keeps it in her closed hand, and proclaims "this is my stone." She then throws it to the ground, and says "look at the other stone in the bag, and if it's black, that means I picked the white stone." The landlord will reveal the other stone, which is obviously black, and the daughter will have succeeded. The landlord was never revealed as a cheater and thus was able to save face.
Marty and Jill want to copy three 60 minute tapes. They have two tape recorders that will dub the tapes for them, so they can do two at a time. It takes 30 minutes for each side to complete; therefore in one hour two tapes will be done, and in another hour the third will be done. Jill says all three tapes can be made in 90 minutes. How?
Jill will rotate the three tapes. Let's call them tapes 1,2, and 3 with sides A and B. In the first 30 minutes they will tape 1A and 2A, in the second 3 minutes they will tape 1B and 3A (Tape 1 is now done). Finally, in the last 30 minutes, they will tape 2B and 3B.
There is a low railroad bridge in your town. One day you see a large truck stopped just before the underpass. When you ask what has happened, the driver tells you that his truck is half of inch higher than the indicated height of the opening. This is the only road to his destination. What can he do to get through the underpass the easiest way?
Let enough air out of the tires to lower the truck.
A man and woman run through a field holding hands. They bound toward the sunset, happy as can be. Suddenly, the man moves off of his straight-line course and starts veering to his left. At the same time, the woman begins running off to her right.
They continue this for a full minute, but never let go of each others' hands. How is this possible?
The man was facing forward, but the woman was running backwards. The man's right hand was holding the woman's right hand. They both veered in the same geographic direction, but it was the man's left and the woman's right because the woman was running backwards.
An infinite number of mathematicians are standing behind a bar. The first asks the barman for half a pint of beer, the second for a quarter pint, the third an eighth, and so on. How many pints of beer will the barman need to fulfill all mathematicians' wishes?
Three playing cards in a row. Can you name them with these clues? There is a two to the right of a king. A diamond will be found to the left of a spade. An ace is to the left of a heart. A heart is to the left of a spade. Now, identify all three cards.
The Miller next took the company aside and showed them nine sacks of flour that were standing as depicted in the sketch.
"Now, hearken, all and some," said he, "while that I do set ye the riddle of the nine sacks of flour.
And mark ye, my lords and masters, that there be single sacks on the outside, pairs next unto them, and three together in the middle thereof.
By Saint Benedict, it doth so happen that if we do but multiply the pair, 28, by the single one, 7, the answer is 196, which is of a truth the number shown by the sacks in the middle.
Yet it be not true that the other pair, 34, when so multiplied by its neighbour, 5, will also make 196.
Wherefore I do beg you, gentle sirs, so to place anew the nine sacks with as little trouble as possible that each pair when thus multiplied by its single neighbour shall make the number in the middle."
As the Miller has stipulated in effect that as few bags as possible shall be moved, there is only one answer to this puzzle, which everybody should be able to solve.
The way to arrange the sacks of flour is as follows: 2, 78, 156, 39, 4. Here each pair when multiplied by its single neighbour makes the number in the middle, and only five of the sacks need be moved.
There are just three other ways in which they might have been arranged (4, 39, 156, 78, 2; or 3, 58, 174, 29, 6; or 6, 29, 174, 58, 3), but they all require the moving of seven sacks.
A duke was hunting in the forest with his men-at-arms and servants when he came across a tree.
Upon it, archery targets were painted and smack in the middle of each was an arrow.
"Who is this incredibly fine archer?" cried the duke. "I must find him!"
After continuing through the forest for a few miles he came across a small boy carrying a bow and arrow.
Eventually the boy admitted that it was he who shot the arrows plumb in the center of all the targets.
"You didn't just walk up to the targets and hammer the arrows into the middle, did you?" asked the duke worriedly.
"No my lord. I shot them from a hundred paces. I swear it by all that I hold holy."
"That is truly astonishing," said the duke. "I hereby admit you into my service."
The boy thanked him profusely.
"But I must ask one favor in return," the duke continued.
"You must tell me how you came to be such an outstanding shot."
How'd he get to be such a good shot?
The boy shot the arrow, then painted the circle around it.
You are driving a car on one big stormy night. You pass a bus station. There are three people who are waiting for the bus: One old sick lady who is dying, One doctor who saved your life before, and one lady who is someone you have been dreaming to be with. You can only take one passenger, which one will you choose?
Give the car key to the doctor, let the doctor take the old lady to the hospital and stay to wait for the bus with the lady of your dreams!