Best long riddles

logicsimpleclean

There is a small town in the midwest with exactly 2 barbershops, one on each side of town. The barbershop on the west side of town is pristine. Its floors are spotless, the windows are always perfectly clear, and the air always smells fresh. The barber has a friendly smile, shined shoes, a well-groomed head of hair, and a fancy shirt. The barbershop on the east side of town is a mess. Its floors and windows are dirty, and the air smells of garbage. The barber always has a grimace on his face. His skin is oily, his hair is short and ragged, and he has food on his clothes all the time. A man travelling through the town realizes he needs a haircut. Knowing the stories of the two barbers, the man decides to go to the dirty barbershop on the east side of town. Why does he do this?
Because there are only two barbers in the town, the barbers must cut each-other's hair. The barber on the west side of town has a nice haircut, so the east-side barber must be a good barber. On the other hand, the barber on the east side of town has ragged hair, meaning the west-side barber must not be very good. So the man goes to the east-side barber to get a better haircut.
78.86 %
51 votes
logicmath

There are n coins in a line. (Assume n is even). Two players take turns to take a coin from one of the ends of the line until there are no more coins left. The player with the larger amount of money wins. Would you rather go first or second? Does it matter? Assume that you go first, describe an algorithm to compute the maximum amount of money you can win. Note that the strategy to pick maximum of two corners may not work. In the following example, first player looses the game when he/she uses strategy to pick maximum of two corners. Example 18 20 15 30 10 14 First Player picks 18, now row of coins is 20 15 30 10 14 Second player picks 20, now row of coins is 15 30 10 14 First Player picks 15, now row of coins is 30 10 14 Second player picks 30, now row of coins is 10 14 First Player picks 14, now row of coins is 10 Second player picks 10, game over. The total value collected by second player is more (20 + 30 + 10) compared to first player (18 + 15 + 14). So the second player wins.
Going first will guarantee that you will not lose. By following the strategy below, you will always win the game (or get a possible tie). (1) Count the sum of all coins that are odd-numbered. (Call this X) (2) Count the sum of all coins that are even-numbered. (Call this Y) (3) If X > Y, take the left-most coin first. Choose all odd-numbered coins in subsequent moves. (4) If X < Y, take the right-most coin first. Choose all even-numbered coins in subsequent moves. (5) If X == Y, you will guarantee to get a tie if you stick with taking only even-numbered/odd-numbered coins. You might be wondering how you can always choose odd-numbered/even-numbered coins. Let me illustrate this using an example where you have 6 coins: Example 18 20 15 30 10 14 Sum of odd coins = 18 + 15 + 10 = 43 Sum of even coins = 20 + 30 + 14 = 64. Since the sum of even coins is more, the first player decides to collect all even coins. He first picks 14, now the other player can only pick a coin (10 or 18). Whichever is picked the other player, the first player again gets an opportunity to pick an even coin and block all even coins.
78.86 %
51 votes
logictricky

A horse is tied to a fifteen-foot rope and there is a bale of hay 25 feet away from him. The horse however is still able to eat from the hay. How is this possible?
The rope wasn't tied to anything.
78.75 %
80 votes
logictrickystory

Once upon a time there was a dad and 3 kids. When the kids were adults, the dad was old and Death came to take the dad. The first son, who became a lawyer, begged Death to let the dad live a few more years. Death agreed. When Death came back, the second son, who became a doctor begged Death to let his father live a few more days. Death agreed. When Death came back the third son, who became a priest begged Death to let the dad live till that candle wick burned out and he pointed to a candle. Death agreed. The third son knew Death wouldn't come back, and he didn't. Why not?
The third son went over and blew out the candle after Death left because the son said "till the candle wick burns out", not "till the candle burns out".
78.73 %
108 votes
logicmathstorycleaninterview

You are somewhere on Earth. You walk due south 1 mile, then due east 1 mile, then due north 1 mile. When you finish this 3-mile walk, you are back exactly where you started. It turns out there are an infinite number of different points on earth where you might be. Can you describe them all? It's important to note that this set of points should contain both an infinite number of different latitudes, and an infinite number of different longitudes (though the same latitudes and longitudes can be repeated multiple times); if it doesn't, you haven't thought of all the points.
One of the points is the North Pole. If you go south one mile, and then east one mile, you're still exactly one mile south of the North Pole, so you'll be back where you started when you go north one mile. To think of the next set of points, imagine the latitude slighty north of the South Pole, where the length of the longitudinal line around the Earth is exactly one mile (put another way, imagine the latitude slightly north of the South Pole where if you were to walk due east one mile, you would end up exactly where you started). Any point exactly one mile north of this latitude is another one of the points you could be at, because you would walk south one mile, then walk east a mile around and end up where you started the eastward walk, and then walk back north one mile to your starting point. So this adds an infinite number of other points we could be at. However, we have not yet met the requirement that our set of points has an infinite number of different latitudes. To meet this requirement and see the rest of the points you might be at, we just generalize the previous set of points. Imagine the latitude slightly north of the South Pole that is 1/2 mile in distance. Also imagine the latitudes in this area that are 1/3 miles in distance, 1/4 miles in distance, 1/5 miles, 1/6 miles, and so on. If you are at any of these latitudes and you walk exactly one mile east, you will end up exactly where you started. Thus, any point that is one mile north of ANY of these latitudes is another one of the points you might have started at, since you'll walk one mile south, then one mile east and end up where you started your eastward walk, and finally, one mile north back to where you started.
78.61 %
68 votes
cleanlogic

You are standing next to three switches. You know these switches belong to three bulbs in a room behind a closed door – the door is tight closed, and heavy which means that it's absolutely impossible to see if any bulb is on or not. All three switches are now in position off. You can do whatever you want with the switches and when you are finished you open the door and go into the room. While in there you have to tell which switch belongs to which bulb. How will you do that?
Turn on the first switch and wait for a while. Turn off the first one and turn on the second. Go into the room. One bulb is shining, the second bulb is hot and the third one nothing.
78.59 %
85 votes
logiccleansimple

A man was in a small town for the day, and needed a haircut. He noticed that there were only two barbers in town, and decided to apply a bit of logical deduction to choosing the best one. Looking at their shops, he saw that the first one was very neat and the barber was clean shaven with a nice haircut. The other shop was a mess, and the barber there needed a shave and had a bad cut besides. Why did the man choose to go to the barber with the messy shop?
Since even barbers rarely try to cut their own hair, and there are only two barbers in town, they must cut each other's hair. The one with the neat hair must have it cut by the one with the bad haircut, who must then be better one, considering his own haircut.
78.59 %
85 votes
logiccleverstory

Emily was sitting at her study table, home alone, on a cold and stormy night. Her parents had taken a flight earlier in the morning to Australia as her grandmother had passed away. She had wanted to follow her parents but she had an important English examination the next day which she could not miss. The storm was getting heavier by the minute and the wind was howling outside. All this noise made it very hard for her to concentrate. She was on the verge of dozing off when she was shaken alert by a sudden "THUD!" She dismissed it as a window which had been slammed shut by the wind. She tried to concentrate on her books when she heard faint footsteps. Emily got out of her room and looked around when suddenly, without warning, she was grabbed by the neck. She tried to scream but it came out as a mere whimper as the intruder was pressing hard against her throat with his arm. She tried to free herself from his grip but to no avail. "Give me all your money!" growled the man who had grabbed her from behind. "Th-there is none h-here! Please ll-let me go!" cried Emily. "Don't LIE TO ME!" screamed the increasingly agitated man. She felt the man strengthen his grip around her neck. She said nothing and a few seconds passed by in silence. Suddenly the phone rang which alerted both of them. "People will get suspicious if I don't answer the phone," said Emily, with a controlled voice. The intruder let her go. "Alright, but NO funny business, or ELSE!" said the nervous intruder. Emily walked toward the phone. She took a deep breath and calmed herself. She picked up the phone. "Hey Em! How's the revision going?" said the caller. "Hey Anna. Thanks for the call. Hey you know those Science notes I lent you last week? Well I really need them back. It would be a great help to me. It's an emergency, so if you could give me them tomorrow it would be great. Please hurry in finding the notes. I need to get back to my books now. Bye," Emily said. She hung up the phone. "It was wise of you not to say anything," said the intruder, although he was more than a bit confused by her conversation. "Now TELL ME WHERE THE MONEY IS KEPT!" screamed the thief. "It...it's...in my dad's room. The first room on the right. Third drawer," said Emily. "SHOW me!" said the man, and removed his grip around her neck. She took a big gulp of air and nearly fell. She swallowed hard and said a silent prayer. She walked slowly, in silence, toward her father's room. All of a sudden, they heard police sirens. The intruder froze in his footsteps. He ran to the nearest window and jumped out of it. Emily ran outside in time to see the intruder being escorted into the car. She saw Anna and she ran toward her and hugged her. "Smart kids," said the policeman. What had happened?
Emily had used the mute button during her conversation with Anna so that all Anna heard was: "call...help...emergency...please hurry". Anna, sensing something was wrong, called the police and told them Emily's address. The police were able to come to Emily's house in time to catch the perpetrator.
78.55 %
118 votes
logicmathclean

You are visiting NYC when a man approaches you. "Not counting bald people, I bet a hundred bucks that there are two people living in New York City with the same number of hairs on their heads," he tells you. "I'll take that bet!" you say. You talk to the man for a minute, after which you realize you have lost the bet. What did the man say to prove his case?
This is a classic example of the pigeonhole principle. The argument goes as follows: assume that every non-bald person in New York City has a different number of hairs on their head. Since there are about 9 million people living in NYC, let's say 8 million of them aren't bald. So 8 million people need to have different numbers of hairs on their head. But on average, people only have about 100,000 hairs. So even if there was someone with 1 hair, someone with 2 hairs, someone with 3 hairs, and so on, all the way up to someone with 100,000 hairs, there are still 7,900,000 other people who all need different numbers of hairs on their heads, and furthermore, who all need MORE than 100,000 hairs on their head. You can see that additionally, at least one person would need to have at least 8,000,000 hairs on their head, because there's no way to have 8,000,000 people all have different numbers of hairs between 1 and 7,999,999. But someone having 8,000,000 is an essential impossibility (as is even having 1,000,000 hairs), So there's no way this situation could be the case, where everyone has a different number of hairs. Which means that at least two people have the same number of hairs.
78.55 %
62 votes
logictrickysimplestory

A duke was hunting in the forest with his men-at-arms and servants when he came across a tree. Upon it, archery targets were painted and smack in the middle of each was an arrow. "Who is this incredibly fine archer?" cried the duke. "I must find him!" After continuing through the forest for a few miles he came across a small boy carrying a bow and arrow. Eventually the boy admitted that it was he who shot the arrows plumb in the center of all the targets. "You didn't just walk up to the targets and hammer the arrows into the middle, did you?" asked the duke worriedly. "No my lord. I shot them from a hundred paces. I swear it by all that I hold holy." "That is truly astonishing," said the duke. "I hereby admit you into my service." The boy thanked him profusely. "But I must ask one favor in return," the duke continued. "You must tell me how you came to be such an outstanding shot." How'd he get to be such a good shot?
The boy shot the arrow, then painted the circle around it.
78.55 %
96 votes