You are walking down a path when you come to two doors. Opening one of the doors will lead you to a life of prosperity and happiness, while opening the other door will lead to a life of misery and sorrow. You don't know which door leads to which life.
In front of the doors are two twin brothers who know which door leads where. One of the brothers always lies, and the other always tells the truth. You don't know which brother is the liar and which is the truth-teller.
You are allowed to ask one single question to one of the brothers (not both) to figure out which door to open.
What question should you ask?
Ask "If I asked your brother what the good door is, what would he say?"
If you ask the truth-telling brother, he will point to the bad door, because this is what the lying brother would point to.
Alternatively, if you ask the lying brother, he will also point to the bad door, because this is NOT what the truth-telling brother would point to.
So whichever door is pointed to, you should go through the other one.
143547
Explanations:
Multiplication of the 1st & 2nd numbers, 5*3 = 15; 9*2 = 18…thusly, 7*2 = 14
Multiplication of the 1st & 3rd numbers, 5*2 = 10; 9*4 = 36…thusly, 7*5 = 35;
Multiplication of the 1st & the sum of the 2nd & 3rd numbers. The generated result is reduced by the value of the 2nd number, …thusly, 7*(2+5) = 49 - 2 = 47
A king has 100 identical servants, each with a different rank between 1 and 100. At the end of each day, each servant comes into the king's quarters, one-by-one, in a random order, and announces his rank to let the king know that he is done working for the day. For example, servant 14 comes in and says "Servant 14, reporting in."
One day, the king's aide comes in and tells the king that one of the servants is missing, though he isn't sure which one.
Before the other servants begin reporting in for the night, the king asks for a piece of paper to write on to help him figure out which servant is missing. Unfortunately, all that's available is a very small piece that can only hold one number at a time. The king is free to erase what he writes and write something new as many times as he likes, but he can only have one number written down at a time.
The king's memory is bad and he won't be able to remember all the exact numbers as the servants report in, so he must use the paper to help him.
How can he use the paper such that once the final servant has reported in, he'll know exactly which servant is missing?
When the first servant comes in, the king should write down his number. For each other servant that reports in, the king should add that servant's number to the current number written on the paper, and then write this new number on the paper.
Once the final servant has reported in, the number on the paper should equal
(1 + 2 + 3 + ... + 99 + 100) - MissingServantsNumber
Since (1 + 2 + 3 + ... + 99 + 100) = 5050, we can rephrase this to say that the number on the paper should equal
5050 - MissingServantsNumber
So to figure out the missing servant's number, the king simply needs to subtract the number written on his paper from 5050:
MissingServantsNumber = 5050 - NumberWrittenOnThePaper
Consider the following explanation for why 1=2:
1. Start out Let y = x
2. Multiply through by x xy = x2
3. Subtract y2 from each side xy - y2 = x2 - y2
4. Factor each side y(x-y) = (x+y)(x-y)
5. Divide both sides by (x-y) y = x+y
6. Divide both sides by y y/y = x/y + y/y
7. And so... 1 = x/y + 1
8. Since x=y, x/y = 1 1 = 1 + 1
8. And so... 1 = 2
How is this possible?
Step 5 is invalid, because we are dividing by (x-y), and since x=y, we are thus dividing by 0. This is an invalid mathematical operation (division by 0), and so by not followinng basic mathematical rules, we are able to get strange results like these.
Imagine John, a party magician, is carrying three pieces of gold each piece weighing one kilogram. While taking a walk he comes to a bridge which has a sign posted saying the bridge could hold only a maximum of 80 kilograms. John weighs 78 kilograms and the gold weighs three kilograms. John reads the sign and still safely crossed the bridge with all the gold. How did he manage this?
John is a juggler. When he came to the bridge he juggled the gold, always keeping one piece in the air.
A dead body is found at the bottom of a multistory building. Seeing the position of the body, it is evident that the person jumped from one of the floors, committing suicide.
A homicide detective is called to look after the case. He goes to the first floor and walks in the room facing the direction in which the body was found.
He opens the window in that direction and flips a coin towards the floor. Then he goes to the second floor and repeats the process. He keeps on doing this until he reaches the last floor. Then, when he climbs down he tells the team that it is a murder not suicide.
How did he come to know that it was a murder?
None of the windows were left open. If the person jumped, who closed the window?
At a local bar, three friends, Mr. Green, Mr. Red and Mr. Blue, were having a drink. One man was wearing a red suit; one a green suit; and the other a blue suit.
"Have you noticed," said the man in the blue suit, "that although our suits have colors corresponding to our names, not one of us is wearing a suit that matches our own names?"
Mr. Red looked at the other two and said, "You're absolutely correct."
What color suit is each man wearing?
Since none of the men are wearing the color of suit that corresponds to their names, and Mr. Red was replying to the man in the blue suit, it had to be Mr. Green to whom he replied. We then know that Mr. Green is wearing a blue suit. Therefore, Mr. Red is wearing a green suit and Mr. Blue is wearing a red suit.