Justin Case and Auntie Bellum are fellow con artists who deliver coded messages to each other to communicate. Recently Auntie Bellum was put in jail for stealing a rare and expensive diamond. Only a few days after this, Justin Case sent her a friendly letter asking her how she was. On the inside of the envelope of the letter, he hid a code. Yesterday, Auntie Bellum escaped and left the envelope and the letter inside the jail cell. The police did some research and found the code on the inside of the envelope, but they haven't been able to crack it. Could you help the police find out what the message is?
This is the code:
llwatchawtfeclocklnisksundialcirbetimersool

The message was "loose bricks in left wall." The message was put backward with words related to time in between. This is how the message looks when separated:
ll watch awtfe clock Inisk sundial cirbe timer sool
If you take out watch, clock, sundial, and timer, this is what is left:
llawtfelniskcirbesool
Look at this backwards and this is what you have:
loose bricks in left wall
Auntie Bellum took out the bricks and escaped in the night. Then, she put the bricks back where they were.

Emily was sitting at her study table, home alone, on a cold and stormy night. Her parents had taken a flight earlier in the morning to Australia as her grandmother had passed away. She had wanted to follow her parents but she had an important English examination the next day which she could not miss. The storm was getting heavier by the minute and the wind was howling outside. All this noise made it very hard for her to concentrate. She was on the verge of dozing off when she was shaken alert by a sudden "THUD!" She dismissed it as a window which had been slammed shut by the wind.
She tried to concentrate on her books when she heard faint footsteps. Emily got out of her room and looked around when suddenly, without warning, she was grabbed by the neck. She tried to scream but it came out as a mere whimper as the intruder was pressing hard against her throat with his arm. She tried to free herself from his grip but to no avail.
"Give me all your money!" growled the man who had grabbed her from behind.
"Th-there is none h-here! Please ll-let me go!" cried Emily.
"Don't LIE TO ME!" screamed the increasingly agitated man. She felt the man strengthen his grip around her neck. She said nothing and a few seconds passed by in silence. Suddenly the phone rang which alerted both of them.
"People will get suspicious if I don't answer the phone," said Emily, with a controlled voice. The intruder let her go.
"Alright, but NO funny business, or ELSE!" said the nervous intruder. Emily walked toward the phone. She took a deep breath and calmed herself. She picked up the phone. "Hey Em! How's the revision going?" said the caller.
"Hey Anna. Thanks for the call. Hey you know those Science notes I lent you last week? Well I really need them back. It would be a great help to me. It's an emergency, so if you could give me them tomorrow it would be great. Please hurry in finding the notes. I need to get back to my books now. Bye," Emily said. She hung up the phone.
"It was wise of you not to say anything," said the intruder, although he was more than a bit confused by her conversation.
"Now TELL ME WHERE THE MONEY IS KEPT!" screamed the thief.
"It...it's...in my dad's room. The first room on the right. Third drawer," said Emily. "SHOW me!" said the man, and removed his grip around her neck. She took a big gulp of air and nearly fell. She swallowed hard and said a silent prayer. She walked slowly, in silence, toward her father's room. All of a sudden, they heard police sirens. The intruder froze in his footsteps. He ran to the nearest window and jumped out of it. Emily ran outside in time to see the intruder being escorted into the car. She saw Anna and she ran toward her and hugged her.
"Smart kids," said the policeman.
What had happened?

Emily had used the mute button during her conversation with Anna so that all Anna heard was: "call...help...emergency...please hurry".
Anna, sensing something was wrong, called the police and told them Emily's address. The police were able to come to Emily's house in time to catch the perpetrator.

A man was in a small town for the day, and needed a haircut. He noticed that there were only two barbers in town, and decided to apply a bit of logical deduction to choosing the best one. Looking at their shops, he saw that the first one was very neat and the barber was clean shaven with a nice haircut. The other shop was a mess, and the barber there needed a shave and had a bad cut besides. Why did the man choose to go to the barber with the messy shop?

Since even barbers rarely try to cut their own hair, and there are only two barbers in town, they must cut each other's hair. The one with the neat hair must have it cut by the one with the bad haircut, who must then be better one, considering his own haircut.

A poor miller living with his daughter comes onto hard times and is not able to pay his rent. His evil landlord threatens to evict them unless the daughter marries him.
The daughter, not wanting to marry the landlord but fearing that her father won't be able to take being evicted, suggests the following proposition to the landlord. He will put two stones, one white and one black, into a bag in front of the rest of the townspeople. She will pick one stone out of the bag. If she picks the white stone, the landlord will forgive their debt and let them stay, but if she picks the black stone, she will marry the landlord, and her father will be evicted anyway.
The landlord agrees to the proposal. Everybody meets in the center of the town. The landlord picks up two stones to put in the bag, but the daughter notices that he secretly picked two black stones.
She is about to reveal his deception but realizes that this would embarrass him in front of the townspeople, and he would evict them. She quickly comes up with another plan. What can she do that will allow the landlord save face, while also ensuring that she and her father can stay and that she won't have to marry the landlord?

The daughter picks a stone out, keeps it in her closed hand, and proclaims "this is my stone." She then throws it to the ground, and says "look at the other stone in the bag, and if it's black, that means I picked the white stone." The landlord will reveal the other stone, which is obviously black, and the daughter will have succeeded. The landlord was never revealed as a cheater and thus was able to save face.

You have twelve balls, identical in every way except that one of them weighs slightly less or more than the balls.
You have a balance scale, and are allowed to do 3 weighings to determine which ball has the different weight, and whether the ball weighs more or less than the other balls.
What process would you use to weigh the balls in order to figure out which ball weighs a different amount, and whether it weighs more or less than the other balls?

Take eight balls, and put four on one side of the scale, and four on the other.
If the scale is balanced, that means the odd ball out is in the other 4 balls.
Let's call these 4 balls O1, O2, O3, and O4.
Take O1, O2, and O3 and put them on one side of the scale, and take 3 balls from the 8 "normal" balls that you originally weighed, and put them on the other side of the scale.
If the O1, O2, and O3 balls are heavier, that means the odd ball out is among these, and is heavier. Weigh O1 and O2 against each other. If one of them is heavier than the other, this is the odd ball out, and it is heavier. Otherwise, O3 is the odd ball out, and it is heavier.
If the O1, O2, and O3 balls are lighter, that means the odd ball out is among these, and is lighter. Weigh O1 and O2 against each other. If one of them is lighter than the other, this is the odd ball out, and it is lighter. Otherwise, O3 is the odd ball out, and it is lighter.
If these two sets of 3 balls weigh the same amount, then O4 is the odd ball out. Weight it against one of the "normal" balls from the first weighing. If O4 is heavier, then it is heavier, if it's lighter, then it's lighter.
If the scale isn't balanced, then the odd ball out is among these 8 balls.
Let's call the four balls on the side of the scale that was heavier H1, H2, H3, and H4 ("H" for "maybe heavier").
Let's call the four balls on the side of the scale that was lighter L1, L2, L3, and L4 ("L" for "maybe lighter").
Let's also call each ball from the 4 in the original weighing that we know aren't the odd balls out "Normal" balls.
So now weigh [H1, H2, L1] against [H3, L2, Normal].
-If the [H1, H2, L1] side is heavier (and thus the [H3, L2, Normal] side is lighter), then this means that either H1 or H2 is the odd ball out and is heavier, or L2 is the odd ball out and is lighter.
-So measure [H1, L2] against 2 of the "Normal" balls.
-If [H1, L2] are heavier, then H1 is the odd ball out, and is heavier.
-If [H1, L2] are lighter, then L2 is the odd ball out, and is lighter.
-If the scale is balanced, then H2 is the odd ball out, and is heavier.
-If the [H1, H2, L1] side is lighter (and thus the [H3, L2, Normal] side is heavier), then this means that either L1 is the odd ball out, and is lighter, or H3 is the odd ball out, and is heavier.
-So measure L1 and H3 against two "normal" balls.
-If the [L1, H3] side is lighter, then L1 is the odd ball out, and is lighter.
-Otherwise, if the [L1, H3] side is heavier, then H3 is the odd ball out, and is heavier.
If the [H1, H2, L1] side and the [H3, L2, Normal] side weigh the same, then we know that either H4 is the odd ball out, and is heavier, or one of L3 or L4 is the odd ball out, and is lighter.
So weight [H4, L3] against two of the "Normal" balls.
If the [H4, L3] side is heavier, then H4 is the odd ball out, and is heavier.
If the [H4, L3] side is lighter, then L3 is the odd ball out, and is lighter.
If the [H4, L3] side weighs the same as the [Normal, Normal] side, then L4 is the odd ball out, and is lighter.

When Manish was three years old he carved a nail into his favorite tree to mark his height. Six years later at age nine, Manish returned to see how much higher the nail was. If the tree grew by five centimeters each year, how much higher would the nail be.

The nail would be at the same height since trees grow at their tops.

You have just purchased a small company called Company X. Company X has N employees, and everyone is either an engineer or a manager. You know for sure that there are more engineers than managers at the company.
Everyone at Company X knows everyone else's position, and you are able to ask any employee about the position of any other employee. For example, you could approach employee A and ask "Is employee B an engineer or a manager?" You can only direct your question to one employee at a time, and can only ask about one other employee at a time. You're allowed to ask the same employee multiple questions if you want.
Your goal is to find at least one engineer to solve a huge problem that has just hit the company's factory. The problem is so urgent that you only have time to ask N-1 total questions.
The major problem with questioning the employees, however, is that while the engineers will always tell you the truth about other employees' roles, the managers may lie to you if they like. You can assume that the managers will do their best to confuse you.
How can you find at least one engineer by asking at most N-1 questions?

You can find at least one engineer using the following process:
Put all of the employees in a conference room. If there happen to be an even number of employees, pick one at random and send him home for the day so that we start with an odd number of employees. Note that there will still be more engineers than managers after we send this employee home.
Then call them out one at a time in any order. You will be forming them into a line as follows:
If there is nobody currently in the line, put the employee you just called out in the line.
Otherwise, if there is anybody in the line, then we do the following. Let's call the employee currently at the front of the line Employee_Front, and call the employee who we just called out of the conference room Employee_Next.
So ask Employee_Front if Employee_Next is a manager or an engineer.
If Employee_Front says "manager", then send both Employee_Front and Employee_Next home for the day.
However, if Employee_Front says "engineer", then put Employee_Next at the front of the line.
Keep doing this until you've called everyone out of the conference room. Notice that at this point, you'll have asked N-1 or less questions (you asked at most one question each time you called an employee out except for the first employee, when you didn't ask a question, so that's at most N-1 questions).
When you're done calling everyone out of the conference room, the person at the front of the line is an engineer. So you've found your engineer!
But the real question: how does this work?
We can prove this works by showing a few things.
First, let's show that if there are any engineers in the line, then they must be in front of any managers.
We'll show this with a proof by contradiction. Assume that there is a manager in front of an engineer somewhere in the line. Then it must have been the case that at some point, that engineer was Employee_Front and that manager was Employee_Next. But then Employee_Front would have said "manager" (since he is an engineer and always tells the truth), and we would have sent them both home. This contradicts their being in the line at all, and thus we know that there can never be a manager in front of an engineer in the line.
So now we know that after the process is done, if there are any engineers in the line, then they will be at the front of the line. That means that all we have to prove now is that there will be at least one engineer in the line at the end of the process, and we'll know that there will be an engineer at the front.
So let's show that there will be at least one engineer in the line. To see why, consider what happens when we ask Employee_Front about Employee_Next, and Employee_Front says "manager". We know for sure that in this case, Employee_Front and Employee_Next are not both engineers, because if this were the case, then Employee_Front would have definitely says "engineer". Put another way, at least one of Employee_Front and Employee_Next is a manager. So by sending them both home, we know we are sending home at least one manager, and thus, we are keeping the balance in the remaining employees that there are more engineers than managers.
Thus, once the process is over, there will be more engineers than managers in the line (this is also sufficient to show that there will be at least one person in the line once the process is over). And so, there must be at least one engineer in the line.
Put altogether, we proved that at the end of the process, there will be at least one engineer in the line and that any engineers in the line must be in front of any managers, and so we know that the person at the front of the line will be an engineer.

You have 25 horses. When they race, each horse runs at a different, constant pace. A horse will always run at the same pace no matter how many times it races.
You want to figure out which are your 3 fastest horses. You are allowed to race at most 5 horses against each other at a time. You don't have a stopwatch so all you can learn from each race is which order the horses finish in.
What is the least number of races you can conduct to figure out which 3 horses are fastest?

You need to conduct 7 races.
First, separate the horses into 5 groups of 5 horses each, and race the horses in each of these groups. Let's call these groups A, B, C, D and E, and within each group let's label them in the order they finished. So for example, in group A, A1 finished 1st, A2 finished 2nd, A3 finished 3rd, and so on.
We can rule out the bottom two finishers in each race (A4 and A5, B4 and B5, C4 and C5, D4 and D5, and E4 and E5), since we know of at least 3 horses that are faster than them (specifically, the horses that beat them in their respective races).
This table shows our remaining horses:
A1 B1 C1 D1 E1
A2 B2 C2 D2 E2
A3 B3 C3 D3 E3
For our 6th race, let's race the top finishers in each group: A1, B1, C1, D1 and E1. Let's assume that the order of finishers is: A1, B1, C1, D1, E1 (so A1 finished first, E1 finished last).
We now know that horse D1 cannot be in the top 3, because it is slower than C1, B1 and A1 (it lost to them in the 6th race). Thus, D2 and D3 can also not be in the to 3 (since they are slower than D1).
Similarly, E1, E2 and E3 cannot be in the top 3 because they are all slower than D1 (which we already know isn't in the top 3).
Let's look at our updated table, having removed these horses that can't be in the top 3:
A1 B1 C1
A2 B2 C2
A3 B3 C3
We can actually rule out a few more horses. C2 and C3 cannot be in the top 3 because they are both slower than C1 (and thus are also slower than B1 and A1). And B3 also can't be in the top 3 because it is slower than B2 and B1 (and thus is also slower than A1). So let's further update our table:
A1 B1 C1
A2 B2
A3
We actually already know that A1 is our fastest horse (since it directly or indirectly beat all the remaining horses). So now we just need to find the other two fastest horses out of A2, A3, B1, B2 and C1. So for our 7th race, we simply race these 5 horses, and the top two finishers, plus A1, are our 3 fastest horses.

Frank and some of the boys were exchanging old war stories. James offered one about how his grandfather (Captain Smith) led a battalion against a German division during World War I. Through brilliant maneuvers he defeated them and captured valuable territory. Within a few months after the battle he was presented with a sword bearing the inscription: "To Captain Smith for Bravery, Daring and Leadership, World War One, from the Men of Battalion 8." Frank looked at James and said, "You really don't expect anyone to believe that yarn, do you?"
What is wrong with the story?

It wasn't called World War One until much later. It was called the Great War at first, because they did not know during that war and immediately afterward that there would be a second World War (WW II).

Brad starred through the dirty soot-smeared window on the 22nd floor of the office tower. Overcome with depression he slid the window open and jumped through it. It was a sheer drop outside the building to the ground. Miraculously after he landed he was completely unhurt. Since there was nothing to cushion his fall or slow his descent, how could he have survived the fall?

Brad was so sick and tired of window washing, he opened the window and jumped inside.