Difficult story riddles

cleanstoryclever

In classic mythology, there is the story of the Sphinx, a monster with the body of a lion and the upper part of a woman. The Sphinx lay crouched on the top of a rock along the highroad to the city of Thebes, and stopped all travellers passing by, proposing to them a riddle. Those who failed to answer the riddle correctly were killed. This is the riddle the Sphinx asked the travellers: "What animal walks on four legs in the morning, two legs during the day, and three legs in the evening?"
This is part of the story of Oedipus, who replied to the Sphinx, "Man, who in childhood creeps on hands and knees, in manhood walks erect, and in old age with the aid of a staff." Morning, day and night are representative of the stages of life. The Sphinx was so mortified at the solving of her riddle that she cast herself down from the rock and perished.
82.29 %
782 votes
storyclever

In a far away land, it was known that if you drank poison, the only way to save yourself is to drink a stronger poison, which neutralizes the weaker poison. The king that ruled the land wanted to make sure that he possessed the strongest poison in the kingdom, in order to ensure his survival, in any situation. So the king called the kingdom's pharmacist and the kingdom's treasurer, he gave each a week to make the strongest poison. Then, each would drink the other one's poison, then his own, and the one that will survive, will be the one that had the stronger poison. The pharmacist went straight to work, but the treasurer knew he had no chance, for the pharmacist was much more experienced in this field, so instead, he made up a plan to survive and make sure the pharmacist dies. On the last day the pharmacist suddenly realized that the treasurer would know he had no chance, so he must have a plan. After a little thought, the pharmacist realized what the treasurer's plan must be, and he concocted a counter plan, to make sure he survives and the treasurer dies. When the time came, the king summoned both of them. They drank the poisons as planned, and the treasurer died, the pharmacist survived, and the king didn't get what he wanted. What exactly happened there?
The treasurer's plan was to drink a weak poison prior to the meeting with the king, and then he would drink the pharmacist's strong poison, which would neutralize the weak poison. As his own poison he would bring water, which will have no effect on him, but the pharmacist who would drink the water, and then his poison would surely die. When the pharmacist figured out this plan, he decided to bring water as well. So the treasurer who drank poison earlier, drank the pharmacist's water, then his own water, and died of the poison he drank before. The pharmacist would drink only water, so nothing will happen to him. And because both of them brought the king water, he didn't get a strong poison like he wanted.
80.31 %
99 votes
logicstoryclever

You have just purchased a small company called Company X. Company X has N employees, and everyone is either an engineer or a manager. You know for sure that there are more engineers than managers at the company. Everyone at Company X knows everyone else's position, and you are able to ask any employee about the position of any other employee. For example, you could approach employee A and ask "Is employee B an engineer or a manager?" You can only direct your question to one employee at a time, and can only ask about one other employee at a time. You're allowed to ask the same employee multiple questions if you want. Your goal is to find at least one engineer to solve a huge problem that has just hit the company's factory. The problem is so urgent that you only have time to ask N-1 total questions. The major problem with questioning the employees, however, is that while the engineers will always tell you the truth about other employees' roles, the managers may lie to you if they like. You can assume that the managers will do their best to confuse you. How can you find at least one engineer by asking at most N-1 questions?
You can find at least one engineer using the following process: Put all of the employees in a conference room. If there happen to be an even number of employees, pick one at random and send him home for the day so that we start with an odd number of employees. Note that there will still be more engineers than managers after we send this employee home. Then call them out one at a time in any order. You will be forming them into a line as follows: If there is nobody currently in the line, put the employee you just called out in the line. Otherwise, if there is anybody in the line, then we do the following. Let's call the employee currently at the front of the line Employee_Front, and call the employee who we just called out of the conference room Employee_Next. So ask Employee_Front if Employee_Next is a manager or an engineer. If Employee_Front says "manager", then send both Employee_Front and Employee_Next home for the day. However, if Employee_Front says "engineer", then put Employee_Next at the front of the line. Keep doing this until you've called everyone out of the conference room. Notice that at this point, you'll have asked N-1 or less questions (you asked at most one question each time you called an employee out except for the first employee, when you didn't ask a question, so that's at most N-1 questions). When you're done calling everyone out of the conference room, the person at the front of the line is an engineer. So you've found your engineer! But the real question: how does this work? We can prove this works by showing a few things. First, let's show that if there are any engineers in the line, then they must be in front of any managers. We'll show this with a proof by contradiction. Assume that there is a manager in front of an engineer somewhere in the line. Then it must have been the case that at some point, that engineer was Employee_Front and that manager was Employee_Next. But then Employee_Front would have said "manager" (since he is an engineer and always tells the truth), and we would have sent them both home. This contradicts their being in the line at all, and thus we know that there can never be a manager in front of an engineer in the line. So now we know that after the process is done, if there are any engineers in the line, then they will be at the front of the line. That means that all we have to prove now is that there will be at least one engineer in the line at the end of the process, and we'll know that there will be an engineer at the front. So let's show that there will be at least one engineer in the line. To see why, consider what happens when we ask Employee_Front about Employee_Next, and Employee_Front says "manager". We know for sure that in this case, Employee_Front and Employee_Next are not both engineers, because if this were the case, then Employee_Front would have definitely says "engineer". Put another way, at least one of Employee_Front and Employee_Next is a manager. So by sending them both home, we know we are sending home at least one manager, and thus, we are keeping the balance in the remaining employees that there are more engineers than managers. Thus, once the process is over, there will be more engineers than managers in the line (this is also sufficient to show that there will be at least one person in the line once the process is over). And so, there must be at least one engineer in the line. Put altogether, we proved that at the end of the process, there will be at least one engineer in the line and that any engineers in the line must be in front of any managers, and so we know that the person at the front of the line will be an engineer.
79.77 %
66 votes
logicstoryclever

You've been placed on a course of expensive medication in which you are to take one tablet of Plusin and one tablet of Minusin daily. You must be careful that you take just one of each because taking more of either can have serious side effects. Taking Plusin without taking Minusin, or vice versa, can also be very serious, because they must be taken together in order to be effective. In summary, you must take exactly one of the Plusin pills and one of the Minusin pills at one time. Therefore, you open up the Plusin bottle, and you tap one Plusin pill into your hand. You put that bottle aside and you open the Minusin bottle. You do the same, but by mistake, two Minusins fall into your hand with the Plusin pill. Now, here's the problem. You weren't watching your hand as the pills fell into it, so you can't tell the Plusin pill apart from the two Minusin pills. The pills look identical. They are both the same size, same weight (10 micrograms), same color (Blue), same shape (perfect square), same everything, and they are not marked differently in any way. What are you going to do? You cannot tell which pill is which, and they cost $500 a piece, so you cannot afford to throw them away and start over again. How do you get your daily dose of exactly one Plusin and exactly one Minusin without wasting any of the pills?
Carefully cut each of the three pills in half, and carefully separate them into two piles, with half of each pill in each pile. You do not know which pill is which, but you are 100% sure that each of the two piles now contains two halves of Minusin and half of Plusin. Now go back into the Plusin bottle, take out a pill, cut it in half, and add one half to each stack. Now you have two stacks, each one containing two halves of Plusin and two halves of Minusin. Take one stack of pills today, and save the second stack for tomorrow.
79.46 %
77 votes
logiccleverstory

A monk leaves at sunrise and walks on a path from the front door of his monastery to the top of a nearby mountain. He arrives at the mountain summit exactly at sundown. The next day, he rises again at sunrise and descends down to his monastery, following the same path that he took up the mountain. Assuming sunrise and sunset occured at the same time on each of the two days, prove that the monk must have been at some spot on the path at the same exact time on both days.
Imagine that instead of the same monk walking down the mountain on the second day, that it was actually a different monk. Let's call the monk who walked up the mountain monk A, and the monk who walked down the mountain monk B. Now pretend that instead of walking down the mountain on the second day, monk B actually walked down the mountain on the first day (the same day monk A walks up the mountain). Monk A and monk B will walk past each other at some point on their walks. This moment when they cross paths is the time of day at which the actual monk was at the same point on both days. Because in the new scenario monk A and monk B MUST cross paths, this moment must exist.
79.19 %
58 votes
trickylogicstory

Two men working at a construction site were up for a challenge, and they were pretty mad at each other. Finally, at lunch break, they confronted one another. One man, obviously stronger, said "See that wheelbarrow? I'm willin' to bet $100 (that's all I have in my wallet here) that you can't wheel something to that cone and back that I can't do twice as far. Do you have a bet?" The other man, too dignified to decline, shook his hand, but he had a plan formulating. He looked at the objects lying around: a pile of 400 bricks, a steel beam, the 10 men that had gathered around to watch, his pickup truck, a stack of ten bags of concrete mix, and then he finalized his plan. "All right," he said, and revealed his object. That night, the strong man went home thoroughly teased and $100 poorer. What did the other man choose?
He looked the man right in the eye and said "get in."
79.00 %
81 votes
logicmathstorycleaninterview

You are somewhere on Earth. You walk due south 1 mile, then due east 1 mile, then due north 1 mile. When you finish this 3-mile walk, you are back exactly where you started. It turns out there are an infinite number of different points on earth where you might be. Can you describe them all? It's important to note that this set of points should contain both an infinite number of different latitudes, and an infinite number of different longitudes (though the same latitudes and longitudes can be repeated multiple times); if it doesn't, you haven't thought of all the points.
One of the points is the North Pole. If you go south one mile, and then east one mile, you're still exactly one mile south of the North Pole, so you'll be back where you started when you go north one mile. To think of the next set of points, imagine the latitude slighty north of the South Pole, where the length of the longitudinal line around the Earth is exactly one mile (put another way, imagine the latitude slightly north of the South Pole where if you were to walk due east one mile, you would end up exactly where you started). Any point exactly one mile north of this latitude is another one of the points you could be at, because you would walk south one mile, then walk east a mile around and end up where you started the eastward walk, and then walk back north one mile to your starting point. So this adds an infinite number of other points we could be at. However, we have not yet met the requirement that our set of points has an infinite number of different latitudes. To meet this requirement and see the rest of the points you might be at, we just generalize the previous set of points. Imagine the latitude slightly north of the South Pole that is 1/2 mile in distance. Also imagine the latitudes in this area that are 1/3 miles in distance, 1/4 miles in distance, 1/5 miles, 1/6 miles, and so on. If you are at any of these latitudes and you walk exactly one mile east, you will end up exactly where you started. Thus, any point that is one mile north of ANY of these latitudes is another one of the points you might have started at, since you'll walk one mile south, then one mile east and end up where you started your eastward walk, and finally, one mile north back to where you started.
78.61 %
68 votes
logiccleverstory

Emily was sitting at her study table, home alone, on a cold and stormy night. Her parents had taken a flight earlier in the morning to Australia as her grandmother had passed away. She had wanted to follow her parents but she had an important English examination the next day which she could not miss. The storm was getting heavier by the minute and the wind was howling outside. All this noise made it very hard for her to concentrate. She was on the verge of dozing off when she was shaken alert by a sudden "THUD!" She dismissed it as a window which had been slammed shut by the wind. She tried to concentrate on her books when she heard faint footsteps. Emily got out of her room and looked around when suddenly, without warning, she was grabbed by the neck. She tried to scream but it came out as a mere whimper as the intruder was pressing hard against her throat with his arm. She tried to free herself from his grip but to no avail. "Give me all your money!" growled the man who had grabbed her from behind. "Th-there is none h-here! Please ll-let me go!" cried Emily. "Don't LIE TO ME!" screamed the increasingly agitated man. She felt the man strengthen his grip around her neck. She said nothing and a few seconds passed by in silence. Suddenly the phone rang which alerted both of them. "People will get suspicious if I don't answer the phone," said Emily, with a controlled voice. The intruder let her go. "Alright, but NO funny business, or ELSE!" said the nervous intruder. Emily walked toward the phone. She took a deep breath and calmed herself. She picked up the phone. "Hey Em! How's the revision going?" said the caller. "Hey Anna. Thanks for the call. Hey you know those Science notes I lent you last week? Well I really need them back. It would be a great help to me. It's an emergency, so if you could give me them tomorrow it would be great. Please hurry in finding the notes. I need to get back to my books now. Bye," Emily said. She hung up the phone. "It was wise of you not to say anything," said the intruder, although he was more than a bit confused by her conversation. "Now TELL ME WHERE THE MONEY IS KEPT!" screamed the thief. "It...it's...in my dad's room. The first room on the right. Third drawer," said Emily. "SHOW me!" said the man, and removed his grip around her neck. She took a big gulp of air and nearly fell. She swallowed hard and said a silent prayer. She walked slowly, in silence, toward her father's room. All of a sudden, they heard police sirens. The intruder froze in his footsteps. He ran to the nearest window and jumped out of it. Emily ran outside in time to see the intruder being escorted into the car. She saw Anna and she ran toward her and hugged her. "Smart kids," said the policeman. What had happened?
Emily had used the mute button during her conversation with Anna so that all Anna heard was: "call...help...emergency...please hurry". Anna, sensing something was wrong, called the police and told them Emily's address. The police were able to come to Emily's house in time to catch the perpetrator.
78.55 %
118 votes
logicstorymath

You are standing in a house in the middle of the countryside. There is a small hole in one of the interior walls of the house, through which 100 identical wires are protruding. From this hole, the wires run underground all the way to a small shed exactly 1 mile away from the house, and are protruding from one of the shed's walls so that they are accessible from inside the shed. The ends of the wires coming out of the house wall each have a small tag on them, labeled with each number from 1 to 100 (so one of the wires is labeled "1", one is labeled "2", and so on, all the way through "100"). Your task is to label the ends of the wires protruding from the shed wall with the same number as the other end of the wire from the house (so, for example, the wire with its end labeled "47" in the house should have its other end in the shed labeled "47" as well). To help you label the ends of the wires in the shed, there are an unlimited supply of batteries in the house, and a single lightbulb in the shed. The way it works is that in the house, you can take any two wires and attach them to a single battery. If you then go to the shed and touch those two wires to the lightbulb, it will light up. The lightbulb will only light up if you touch it to two wires that are attached to the same battery. You can use as many of the batteries as you want, but you cannot attach any given wire to more than one battery at a time. Also, you cannot attach more than two wires to a given battery at one time. (Basically, each battery you use will have exactly two wires attached to it). Note that you don't have to attach all of the wires to batteries if you don't want to. Your goal, starting in the house, is to travel as little distance as possible in order to label all of the wires in the shed. You tell a few friends about the task at hand. "That will require you to travel 15 miles!" of of them exclaims. "Pish posh," yells another. "You'll only have to travel 5 miles!" "That's nonsense," a third replies. "You can do it in 3 miles!" Which of your friends is correct? And what strategy would you use to travel that number of miles to label all of the wires in the shed?
Believe it or not, you can do it travelling only 3 miles! The answer is rather elegant. Starting from the house, don't attach wires 1 and 2 to any batteries, but for the remaining wires, attach them in consecutive pairs to batteries (so attach wires 3 and 4 to the same battery, attach wires 5 and 6 to the same battery, and so on all the way through wires 99 and 100). Now travel 1 mile to the shed, and using the lightbulb, find all pairs of wires that light it up. Put a rubberband around each pair or wires that light up the lightbulb. The two wires that don't light up any lightbulbs are wires 1 and 2 (though you don't know yet which one of them is wire 1 and which is wire 2). Put a rubberband around this pair of wires as well, but mark it so you remember that they are wires 1 and 2. Now go 1 mile back to the house, and attach odd-numbered wires to batteries in the following pairs: (1 and 3), (5 and 7), (9 and 11), and so on, all the way through (97 and 99). Similarly, attach even-numbered wires to batteries in the following pairs: (4 and 6), (8 and 10), (12 and 14), and so on, all the way through (96 and 98). Note that in this round, we didn't attach wire 2 or wire 100 to any batteries. Finally, travel 1 mile back to the shed. You're now in a position to label all of the wires here. First, remember we know the pair of wires that are, collectively, wires 1 and 2. So test wires 1 and 2 with all the other wires to see what pair lights up the lightbulb. The wire from wires 1 and 2 that doesn't light up the bulb is wire 2 (which, remember, we didn't connect to a battery), and the other is wire 1, so we can label these as such. Furthermore, the wire that, with wire 1, lights up a lightbulb, is wire 3 (remember how we connected the wires this round). Now, the other wire in the rubber band with wire 3 is wire 4 (we know this from the first round), and the wire that, with wire 4, lights up the lightbulb, is wire 6 (again, because of how we connected the wires to batteries this round). We can continue labeling batteries this way (next we'll label wire 7, which is rubber-banded to wire 6, and then we'll label wire 9, which lights up the lightbulb with wire 7, and so on). At the end, we'll label wire 97, and then wire 99 (which lights up the lightbulb with wire 97), and finally wire 100 (which isn't connected to a battery this round, but is rubber-banded to wire 99). And we're done, having travelled only 3 miles!
78.50 %
56 votes
logicmathstory

The owner of a banana plantation has a camel. He wants to transport his 3000 bananas to the market, which is located after the desert. The distance between his banana plantation and the market is about 1000 kilometer. So he decided to take his camel to carry the bananas. The camel can carry at the maximum of 1000 bananas at a time, and it eats one banana for every kilometer it travels. What is the most bananas you can bring over to your destination?
First of all, the brute-force approach does not work. If the Camel starts by picking up the 1000 bananas and try to reach point B, then he will eat up all the 1000 bananas on the way and there will be no bananas left for him to return to point A. So we have to take an approach that the Camel drops the bananas in between and then returns to point A to pick up bananas again. Since there are 3000 bananas and the Camel can only carry 1000 bananas, he will have to make 3 trips to carry them all to any point in between. When bananas are reduced to 2000 then the Camel can shift them to another point in 2 trips and when the number of bananas left are <= 1000, then he should not return and only move forward. In the first part, P1, to shift the bananas by 1Km, the Camel will have to Move forward with 1000 bananas – Will eat up 1 banana in the way forward Leave 998 banana after 1 km and return with 1 banana – will eat up 1 banana in the way back Pick up the next 1000 bananas and move forward – Will eat up 1 banana in the way forward Leave 998 banana after 1 km and return with 1 banana – will eat up 1 banana in the way back Will carry the last 1000 bananas from point a and move forward – will eat up 1 banana Note: After point 5 the Camel does not need to return to point A again. So to shift 3000 bananas by 1km, the Camel will eat up 5 bananas. After moving to 200 km the Camel would have eaten up 1000 bananas and is now left with 2000 bananas. Now in the Part P2, the Camel needs to do the following to shift the Bananas by 1km. Move forward with 1000 bananas – Will eat up 1 banana in the way forward Leave 998 banana after 1 km and return with 1 banana – will eat up this 1 banana in the way back Pick up the next 1000 bananas and move forward – Will eat up 1 banana in the way forward Note: After point 3 the Camel does not need to return to the starting point of P2. So to shift 2000 bananas by 1km, the Camel will eat up 3 bananas. After moving to 333 km the camel would have eaten up 1000 bananas and is now left with the last 1000 bananas. The Camel will actually be able to cover 333.33 km, I have ignored the decimal part because it will not make a difference in this example. Hence the length of part P2 is 333 Km. Now, for the last part, P3, the Camel only has to move forward. He has already covered 533 (200+333) out of 1000 km in Parts P1 & P2. Now he has to cover only 467 km and he has 1000 bananas. He will eat up 467 bananas on the way forward, and at point B the Camel will be left with only 533 Bananas.
78.12 %
72 votes
123
MORE RIDDLES >
Page 1 of 3.