Difficult riddles

cleaninterviewmath

Euro 2012 Football

What should be the value of the bottom row in our. Euro 2012 Football themed grid?
115. Each shirt is worth 40, each ball is worth 25 and each scarf is worth 10
87.18 %
32 votes

logic

Unusual paragraph

This is an unusual paragraph. I’m curious as to just how quickly you can find out what is so unusual about it. It looks so ordinary and plain that you would think nothing was wrong with it. In fact, nothing is wrong with it! It is highly unusual though. Study it and think about it, but you still may not find anything odd. But if you work at it a bit, you might find out. Try to do so without any coaching.
The letter "e", which is the most common letter in the English language, does not appear once in the long paragraph.
87.14 %
55 votes

logicshort

Sequence of numbers

Finish the sequence: 7 8 5 5 3 4 4 ?
6 - the number of letters in the month august; (January has 7 letters, February has 8 etc.)
86.91 %
43 votes

logic

Hidden message

Find a short hidden message in the list of words below. carrot fiasco nephew spring rabbit sonata tailor bureau legacy corona travel bikini object happen soften picnic option waited effigy adverb report accuse animal shriek esteem oyster
Starting with the first two words, take the first and last letters, reading from left to right. Example: Carrot fiascO "from these pairs" the message is as follows: CONGRATULATIONS CODE BREAKER
86.69 %
53 votes

clean

Sphinx riddle

In classic mythology, there is the story of the Sphinx, a monster with the body of a lion and the upper part of a woman. The Sphinx lay crouched on the top of a rock along the highroad to the city of Thebes, and stopped all travellers passing by, proposing to them a riddle. Those who failed to answer the riddle correctly were killed. This is the riddle the Sphinx asked the travellers: "What animal walks on four legs in the morning, two legs during the day, and three legs in the evening?"
This is part of the story of Oedipus, who replied to the Sphinx, "Man, who in childhood creeps on hands and knees, in manhood walks erect, and in old age with the aid of a staff." Morning, day and night are representative of the stages of life. The Sphinx was so mortified at the solving of her riddle that she cast herself down from the rock and perished.
86.20 %
61 votes

logicshort

The Missing Servant

A king has 100 identical servants, each with a different rank between 1 and 100. At the end of each day, each servant comes into the king's quarters, one-by-one, in a random order, and announces his rank to let the king know that he is done working for the day. For example, servant 14 comes in and says "Servant 14, reporting in." One day, the king's aide comes in and tells the king that one of the servants is missing, though he isn't sure which one. Before the other servants begin reporting in for the night, the king asks for a piece of paper to write on to help him figure out which servant is missing. Unfortunately, all that's available is a very small piece that can only hold one number at a time. The king is free to erase what he writes and write something new as many times as he likes, but he can only have one number written down at a time. The king's memory is bad and he won't be able to remember all the exact numbers as the servants report in, so he must use the paper to help him. How can he use the paper such that once the final servant has reported in, he'll know exactly which servant is missing?
When the first servant comes in, the king should write down his number. For each other servant that reports in, the king should add that servant's number to the current number written on the paper, and then write this new number on the paper. Once the final servant has reported in, the number on the paper should equal (1 + 2 + 3 + ... + 99 + 100) - MissingServantsNumber Since (1 + 2 + 3 + ... + 99 + 100) = 5050, we can rephrase this to say that the number on the paper should equal 5050 - MissingServantsNumber So to figure out the missing servant's number, the king simply needs to subtract the number written on his paper from 5050: MissingServantsNumber = 5050 - NumberWrittenOnThePaper
86.20 %
51 votes

logicmathprobability

The same birthday

What is the least number of people that need to be in a room such that there is greater than a 50% chance that at least two of the people have the same birthday?
Only 23 people need to be in the room. Our first observation in solving this problem is the following: (the probability that at least 2 people have the same birthday + the probability that nobody has the same birthday) = 1.0 What this means is that there is a 100% chance that EITHER everybody in the room has a different birthday, OR at least two people in the room have the same birthday (and these probabilities don't add up to more than 1.0 because they cover mutually exclusive situations). With some simple re-arranging of the formula, we get: the probability that at least 2 people have the same birthday = (1.0 - the probability that nobody has the same birthday) So now if we can find the probability that nobody in the room has the same birthday, we just subtract this value from 1.0 and we'll have our answer. The probability that nobody in the room has the same birthday is fairly straightforward to calculate. We can think of this as a "selection without replacement" problem, where each person "selects" a birthday at random, and we then have to figure out the probability that no two people select the same birthday. The first selection has a 365/365 chance of being different than the other birthdays (since none have been selected yet). The next selection has a 364/365 chance of being different than the 1 birthday that has been selected so far. The next selection has a 363/365 chance of being different than the 2 birthdays that have been selected so far. These probabilities are multiplied together since each is conditional on the previous. So for example, the probability that nobody in a room of 3 people have the same birthday is (365/365 * 364/365 * 363/365) =~ 0.9918 More generally, if there are n people in a room, then the probability that nobody has the same birthday is (365/365 * 364/365 * ... * (365-n+2)/365 * (365-n+1)/365) We can plug in values for n. For n=22, we get that the probability that nobody has the same birthday is 0.524, and thus the probabilty that at least two people have the same birthday is (1.0 - 0.524) = 0.476 = 47.6%. Then for n=23, we get that the probability that nobody has the same birthday is 0.493, and thus the probabilty that at least two people have the same birthday is 1.0 - 0.493) = 0.507 = 50.7%. Thus, once we get to 23 people we have reached the 50% threshold.
85.76 %
59 votes

logicmath

Camel and Banana

The owner of a banana plantation has a camel. He wants to transport his 3000 bananas to the market, which is located after the desert. The distance between his banana plantation and the market is about 1000 kilometer. So he decided to take his camel to carry the bananas. The camel can carry at the maximum of 1000 bananas at a time, and it eats one banana for every kilometer it travels. What is the most bananas you can bring over to your destination?
First of all, the brute-force approach does not work. If the Camel starts by picking up the 1000 bananas and try to reach point B, then he will eat up all the 1000 bananas on the way and there will be no bananas left for him to return to point A. So we have to take an approach that the Camel drops the bananas in between and then returns to point A to pick up bananas again. Since there are 3000 bananas and the Camel can only carry 1000 bananas, he will have to make 3 trips to carry them all to any point in between. When bananas are reduced to 2000 then the Camel can shift them to another point in 2 trips and when the number of bananas left are <= 1000, then he should not return and only move forward. In the first part, P1, to shift the bananas by 1Km, the Camel will have to Move forward with 1000 bananas – Will eat up 1 banana in the way forward Leave 998 banana after 1 km and return with 1 banana – will eat up 1 banana in the way back Pick up the next 1000 bananas and move forward – Will eat up 1 banana in the way forward Leave 998 banana after 1 km and return with 1 banana – will eat up 1 banana in the way back Will carry the last 1000 bananas from point a and move forward – will eat up 1 banana Note: After point 5 the Camel does not need to return to point A again. So to shift 3000 bananas by 1km, the Camel will eat up 5 bananas. After moving to 200 km the Camel would have eaten up 1000 bananas and is now left with 2000 bananas. Now in the Part P2, the Camel needs to do the following to shift the Bananas by 1km. Move forward with 1000 bananas – Will eat up 1 banana in the way forward Leave 998 banana after 1 km and return with 1 banana – will eat up this 1 banana in the way back Pick up the next 1000 bananas and move forward – Will eat up 1 banana in the way forward Note: After point 3 the Camel does not need to return to the starting point of P2. So to shift 2000 bananas by 1km, the Camel will eat up 3 bananas. After moving to 333 km the camel would have eaten up 1000 bananas and is now left with the last 1000 bananas. The Camel will actually be able to cover 333.33 km, I have ignored the decimal part because it will not make a difference in this example. Hence the length of part P2 is 333 Km. Now, for the last part, P3, the Camel only has to move forward. He has already covered 533 (200+333) out of 1000 km in Parts P1 & P2. Now he has to cover only 467 km and he has 1000 bananas. He will eat up 467 bananas on the way forward, and at point B the Camel will be left with only 533 Bananas.
85.76 %
59 votes