## Cross a cat with a tree

What do you get if you cross a cat with a tree?

A cat-a-logue.

What do you get if you cross a cat with a tree?

A cat-a-logue.

There are 5 pirates in a ship. Pirates have hierarchy C1, C2, C3, C4 and C5. C1 designation is the highest and C5 is the lowest.
These pirates have three characteristics:
a. Every pirate is so greedy that he can even take lives to make more money.
b. Every pirate desperately wants to stay alive.
c. They are all very intelligent.
There are total 100 gold coins on the ship. The person with the highest designation on the deck is expected to make the distribution. If the majority on the deck does not agree to the distribution proposed, the highest designation pirate will be thrown out of the ship (or simply killed). The first priority of the pirates is to stay alive and second to maximize the gold they get. Pirate 5 devises a plan which he knows will be accepted for sure and will maximize his gold. What is his plan?

To understand the answer,we need to reduce this problem to only 2 pirates. So what happens if there are only 2 pirates. Pirate 2 can easily propose that he gets all the 100 gold coins. Since he constitutes 50% of the pirates, the proposal has to be accepted leaving Pirate 1 with nothing.
Now let's look at 3 pirates situation, Pirate 3 knows that if his proposal does not get accepted, then pirate 2 will get all the gold and pirate 1 will get nothing. So he decides to bribe pirate 1 with one gold coin. Pirate 1 knows that one gold coin is better than nothing so he has to back pirate 3. Pirate 3 proposes {pirate 1, pirate 2, pirate 3} {1, 0, 99}. Since pirate 1 and 3 will vote for it, it will be accepted.
If there are 4 pirates, pirate 4 needs to get one more pirate to vote for his proposal. Pirate 4 realizes that if he dies, pirate 2 will get nothing (according to the proposal with 3 pirates) so he can easily bribe pirate 2 with one gold coin to get his vote. So the distribution will be {0, 1, 0, 99}.
Smart right?
Now can you figure out the distribution with 5 pirates? Let's see. Pirate 5 needs 2 votes and he knows that if he dies, pirate 1 and 3 will get nothing. He can easily bribe pirates 1 and 3 with one gold coin each to get their vote. In the end, he proposes {1, 0, 1, 0, 98}. This proposal will get accepted and provide the maximum amount of gold to pirate 5.

One day, Emperor Akbar posed a question to Birbal. He asked him what Birbal would choose if he offered either justice or a gold coin.
"The gold coin," said Birbal without hesitation.
On hearing this, Akbar was taken aback. "You would prefer a gold coin to justice?" he asked, not believing his own ears.
"Yes," said Birbal.
The other courtiers were amazed by Birbal's display of idiocy. They were full of glee that Birbal had finally managed himself to do what these courtiers had not been able to do for a long time - discredit Birbal in the emperor's eyes!
"I would have been disappointed if this was the choice made even by my lowliest of servants," continued the emperor. "But coming from you it's not only disappointing, but shocking and sad. I did not know you were so debased!"
How did Birbal justify his answer to the enraged and hurt Emperor?

"One asks for what one does not have, Your Majesty." said Birbal, smiling gently and in quiet tones.
"Under Your Majesty´s rule, justice is available to everybody. But I am a spendthrift and always short of money and therefore I said I would choose the gold coin."
The answer immensely pleased the emperor and respect for Birbal was once again restored in the emperor's eyes.

A man was in a small town for the day, and needed a haircut. He noticed that there were only two barbers in town, and decided to apply a bit of logical deduction to choosing the best one. Looking at their shops, he saw that the first one was very neat and the barber was clean shaven with a nice haircut. The other shop was a mess, and the barber there needed a shave and had a bad cut besides. Why did the man choose to go to the barber with the messy shop?

Since even barbers rarely try to cut their own hair, and there are only two barbers in town, they must cut each other's hair. The one with the neat hair must have it cut by the one with the bad haircut, who must then be better one, considering his own haircut.

What kind of cats like to go bowling?

Alley cats.

Which is the rope you never skip with?

Europe.

You have 25 horses. When they race, each horse runs at a different, constant pace. A horse will always run at the same pace no matter how many times it races.
You want to figure out which are your 3 fastest horses. You are allowed to race at most 5 horses against each other at a time. You don't have a stopwatch so all you can learn from each race is which order the horses finish in.
What is the least number of races you can conduct to figure out which 3 horses are fastest?

You need to conduct 7 races.
First, separate the horses into 5 groups of 5 horses each, and race the horses in each of these groups. Let's call these groups A, B, C, D and E, and within each group let's label them in the order they finished. So for example, in group A, A1 finished 1st, A2 finished 2nd, A3 finished 3rd, and so on.
We can rule out the bottom two finishers in each race (A4 and A5, B4 and B5, C4 and C5, D4 and D5, and E4 and E5), since we know of at least 3 horses that are faster than them (specifically, the horses that beat them in their respective races).
This table shows our remaining horses:
A1 B1 C1 D1 E1
A2 B2 C2 D2 E2
A3 B3 C3 D3 E3
For our 6th race, let's race the top finishers in each group: A1, B1, C1, D1 and E1. Let's assume that the order of finishers is: A1, B1, C1, D1, E1 (so A1 finished first, E1 finished last).
We now know that horse D1 cannot be in the top 3, because it is slower than C1, B1 and A1 (it lost to them in the 6th race). Thus, D2 and D3 can also not be in the to 3 (since they are slower than D1).
Similarly, E1, E2 and E3 cannot be in the top 3 because they are all slower than D1 (which we already know isn't in the top 3).
Let's look at our updated table, having removed these horses that can't be in the top 3:
A1 B1 C1
A2 B2 C2
A3 B3 C3
We can actually rule out a few more horses. C2 and C3 cannot be in the top 3 because they are both slower than C1 (and thus are also slower than B1 and A1). And B3 also can't be in the top 3 because it is slower than B2 and B1 (and thus is also slower than A1). So let's further update our table:
A1 B1 C1
A2 B2
A3
We actually already know that A1 is our fastest horse (since it directly or indirectly beat all the remaining horses). So now we just need to find the other two fastest horses out of A2, A3, B1, B2 and C1. So for our 7th race, we simply race these 5 horses, and the top two finishers, plus A1, are our 3 fastest horses.

Two convicts are locked in a cell. There is an unbarred window high up in the cell. No matter if they stand on the bed or one on top of the other they can't reach the window to escape. They then decide to tunnel out. However, they give up with the tunnelling because it will take too long. Finally one of the convicts figures out how to escape from the cell. What is his plan?

His plan is to dig the tunnel and pile up the dirt to climb up to the window to escape.

What did the chewing gum say to the shoe?

I'm stuck on you.

Why couldn't they play cards on the ark?

Because Noah sat on the deck.