Hard riddles

logic

Course of expensive medication

You've been placed on a course of expensive medication in which you are to take one tablet of Sildenafil and one tablet of Citrate daily. You must be careful that you take just one of each because taking more of either can have serious side effects. Taking Sildenafil without taking Citrate, or vice versa, can also be very serious, because they must be taken together in order to be effective. In summary, you must take exactly one of the Sildenafil pills and one of the Citrate pills at one time. Therefore, you open up the Sildenafil bottle, and you tap one Sildenafil pill into your hand. You put that bottle aside and you open the Citrate bottle. You do the same, but by mistake, two Citrates fall into your hand with the Sildenafil pill. Now, here's the problem. You weren't watching your hand as the pills fell into it, so you can't tell the Sildenafil pill apart from the two Citrate pills. The pills look identical. They are both the same size, same weight (10 micrograms), same color (Blue), same shape (perfect square), same everything, and they are not marked differently in any way. What are you going to do? You cannot tell which pill is which, and they cost $300 a piece, so you cannot afford to throw them away and start over again. How do you get your daily dose of exactly one Sildenafil and exactly one Citrate without wasting any of the pills?
Carefully cut each of the three pills in half, and carefully separate them into two piles, with half of each pill in each pile. You do not know which pill is which, but you are 100% sure that each of the two piles now contains two halves of Cirate and half of Sildenafil. Now go back into the Sildenafil bottle, take out a pill, cut it in half, and add one half to each stack. Now you have two stacks, each one containing two halves of Sildenafil and two halves of Citrate. Take one stack of pills today, and save the second stack for tomorrow.
85.94 %
50 votes

logic

King's riddle

Allan, Bertrand, and Cecil were caught stealing so the king sent them to the dungeon. But the king decided to give them a chance. He mad them stand in a line and put hats on their heads. He told them that if they answer a riddle, they could go free. Here is the riddle: "Each of you has a hat on your head. You do not know the color of the hat on your own head. If one of you can guess the color of the hat on your head, I will let you free. But before you answer you must keep standing in this line. You cannot turn around. Here are my only hints: there are only black and white hats. At least one hat is black. At least one hat is white." Allan couldn't see any hats. Bertrand could see Allan's hat but not his own. Cecil could see Bertrand's hat and Allan's hat, but not his own. After a minute nobody had solved the riddle. But then a short while later, one of them solved the riddle. Who was is and how did he know?
Bertrand knew the answer because Cecil didn't say anything after one minute. If Bertrand and Allan's hats were both the same color, then Cecil would know what color his hat was. But Cecil didn't know. So Bertrand knew that Allan's hat was a different color than his. Since Allan's hat was black, Betrand knew his hat was white.
85.29 %
57 votes

cleanfunnyinterview

I know almost every song that has ever existed

A man is sitting in a pub feeling rather poor. He sees the man next to him pull a wad of £50 notes out of his wallet. He turns to the rich man and says to him, 'I have an amazing talent; I know almost every song that has ever existed.' The rich man laughs. The poor man says, 'I am willing to bet you all the money you have in your wallet that I can sing a genuine song with a lady's name of your choice in it.' The rich man laughs again and says, 'OK, how about my daughter's name, Joanna Armstrong-Miller?' The rich man goes home poor. The poor man goes home rich. What song did he sing?
Happy Birthday.
85.29 %
57 votes

logic

Monk on a Path

A monk leaves at sunrise and walks on a path from the front door of his monastery to the top of a nearby mountain. He arrives at the mountain summit exactly at sundown. The next day, he rises again at sunrise and descends down to his monastery, following the same path that he took up the mountain. Assuming sunrise and sunset occured at the same time on each of the two days, prove that the monk must have been at some spot on the path at the same exact time on both days.
Imagine that instead of the same monk walking down the mountain on the second day, that it was actually a different monk. Let's call the monk who walked up the mountain monk A, and the monk who walked down the mountain monk B. Now pretend that instead of walking down the mountain on the second day, monk B actually walked down the mountain on the first day (the same day monk A walks up the mountain). Monk A and monk B will walk past each other at some point on their walks. This moment when they cross paths is the time of day at which the actual monk was at the same point on both days. Because in the new scenario monk A and monk B MUST cross paths, this moment must exist.
85.10 %
47 votes

cleanfunnyshortwhat am I

Houses

There was a green house. Inside the green house there was a white house. Inside the white house there was a red house. Inside the red house there were lots of babies. What am I?
This is a watermelon.
83.86 %
68 votes

cleanlogicshort

Longer line

You draw a line. Without touching it, how do you make the line longer?
You draw a shorter line next to it, and it becomes the longer line.
83.08 %
57 votes

cleanlogicwhat am I

Move very slowly

I move very slowly at an imperceptible rate, although I take my time, I am never late. I accompany life, and survive past demise, I am viewed with esteem in many women's eyes. What am I?
I am your hair.
82.80 %
56 votes

logic

Escaped from jail

Jay escaped from jail and headed to the country. While walking along a rural road, he saw a police car speeding towards him. Jay ran toward it for a short time and then fled into the woods. Why did he run toward the car?
Jay was just starting to cross a bridge when he saw a police car. He ran toward the car to get off the bridge before running into the woods.
82.72 %
48 votes

logicprobability

Live or die probability puzzle

Hussey has been caught stealing goats, and is brought into court for justice. The judge is his ex-wife Amy Hussey, who wants to show him some sympathy, but the law clearly calls for two shots to be taken at Hussey from close range. To make things a little better for Hussey, Amy Hussey tells him she will place two bullets into a six-chambered revolver in successive order. She will spin the chamber, close it, and take one shot. If Hussey is still alive, she will then either take another shot, or spin the chamber again before shooting. Hussey is a bit incredulous that his own ex-wife would carry out the punishment, and a bit sad that she was always such a rule follower. He steels himself as Amy Hussey loads the chambers, spins the revolver, and pulls the trigger. Whew! It was blank. Then Amy Hussey asks, 'Do you want me to pull the trigger again, or should I spin the chamber a second time before pulling the trigger?' What should Hussey choose?
Hussey should have Amy Hussey pull the trigger again without spinning. We know that the first chamber Amy Hussey fired was one of the four empty chambers. Since the bullets were placed in consecutive order, one of the empty chambers is followed by a bullet, and the other three empty chambers are followed by another empty chamber. So if Hussey has Amy Hussey pull the trigger again, the probability that a bullet will be fired is 1/4. If Amy Hussey spins the chamber again, the probability that she shoots Hussey would be 2/6, or 1/3, since there are two possible bullets that would be in firing position out of the six possible chambers that would be in position.
82.72 %
48 votes