Best hard riddles

logiccleverstory

A monk leaves at sunrise and walks on a path from the front door of his monastery to the top of a nearby mountain. He arrives at the mountain summit exactly at sundown. The next day, he rises again at sunrise and descends down to his monastery, following the same path that he took up the mountain. Assuming sunrise and sunset occured at the same time on each of the two days, prove that the monk must have been at some spot on the path at the same exact time on both days.
Imagine that instead of the same monk walking down the mountain on the second day, that it was actually a different monk. Let's call the monk who walked up the mountain monk A, and the monk who walked down the mountain monk B. Now pretend that instead of walking down the mountain on the second day, monk B actually walked down the mountain on the first day (the same day monk A walks up the mountain). Monk A and monk B will walk past each other at some point on their walks. This moment when they cross paths is the time of day at which the actual monk was at the same point on both days. Because in the new scenario monk A and monk B MUST cross paths, this moment must exist.
72.33 %
69 votes
logicstoryclean

A man comes to a small hotel where he wishes to stay for 7 nights. He reaches into his pockets and realizes that he has no money, and the only item he has to offer is a gold chain, which consists of 7 rings connected in a row (not in a loop). The hotel proprietor tells the man that it will cost 1 ring per night, which will add up to all 7 rings for the 7 nights. "Ok," the man says. "I'll give you all 7 rings right now to pre-pay for my stay." "No," the proprietor says. "I don't like to be in other people's debt, so I cannot accept all the rings up front." "Alright," the man responds. "I'll wait until after the seventh night, and then give you all of the rings." "No," the proprietor says again. "I don't like to ever be owed anything. You'll need to make sure you've paid me the exact correct amount after each night." The man thinks for a minute, and then says "I'll just cut each of my rings off of the chain, and then give you one each night." "I do not want cut rings," the proprietor says. "However, I'm willing to let you cut one of the rings if you must." The man thinks for a few minutes and then figures out a way to abide by the proprietor's rules and stay the 7 nights in the hotel. What is his plan?
The man cuts the ring that is third away from the end of the chain. This leaves him with 3 smaller chains of length 1, 2, and 4. Then, he gives rings to the proprietor as follows: After night 1, give the proprietor the single ring After night 2, take the single ring back and give the proprietor the 2-ring chain After night 3, give the proprietor the single ring, totalling 3 rings with the proprietor After night 4, take back the single ring and the 2-ring chain, and give the proprietor the 4-ring chain After night 5, give the proprietor the single ring, totalling 5 rings with the proprietor After night 6, take back the single ring and give the proprietor the 2-ring chain, totalling 6 rings with the proprietor After night 7, give the proprietor the single ring, totalling 7 rings with the proprietor
72.32 %
86 votes
crazyfunnytricky

A man walks into a bar and asks the bartender for a glass of water. The bartender reaches under the bar and brings out a gun and aims it at the man. The man says thank you and leaves. What happened?
The man had the hiccups and the water helped him stop it, and the gun scared him which also help stop his hiccups as well.
72.26 %
90 votes
logicmathclever

You are standing in a pitch-dark room. A friend walks up and hands you a normal deck of 52 cards. He tells you that 13 of the 52 cards are face-up, the rest are face-down. These face-up cards are distributed randomly throughout the deck. Your task is to split up the deck into two piles, using all the cards, such that each pile has the same number of face-up cards. The room is pitch-dark, so you can't see the deck as you do this. How can you accomplish this seemingly impossible task?
Take the first 13 cards off the top of the deck and flip them over. This is the first pile. The second pile is just the remaining 39 cards as they started. This works because if there are N face-up cards in within the first 13 cards, then there will be (13 - N) face up cards in the remaining 39 cards. When you flip those first 13 cards, N of which are face-up, there will now be N cards face-down, and therefore (13 - N) cards face-up, which, as stated, is the same number of face-up cards in the second pile.
72.26 %
90 votes
cleanlogicmath

Mick and John were in a 100 meter race. When Mick crossed the finish line, John was only at the 90 meter mark. Mick suggested they run another race. This time, Mick would start ten meters behind the starting line. All other things being equal, will John win, lose, or will it be a tie in the second race?
John will lose again. In the second race, Mick started ten meters back. By the time John reaches the 90 meter mark, Mick will have caught up him. Therefore, the final ten meters will belong to the faster of the two. Since Mick is faster than John, he will win the final 10 meters and of course the race.
72.22 %
73 votes
funnycrazy

By what process could you make a 'Tea-Table' into food?
If you take away the T, it would be eatable.
72.13 %
102 votes