Create a number using only the digits 4,4,3,3,2,2,1 and 1.
So I can only be eight digits.
You have to make sure the ones are separated by one digit, the twos are separated by two digits the threes are separated with three digits and the fours are separated by four digits.

You are standing in a pitch-dark room. A friend walks up and hands you a normal deck of 52 cards. He tells you that 13 of the 52 cards are face-up, the rest are face-down. These face-up cards are distributed randomly throughout the deck.
Your task is to split up the deck into two piles, using all the cards, such that each pile has the same number of face-up cards. The room is pitch-dark, so you can't see the deck as you do this.
How can you accomplish this seemingly impossible task?

Take the first 13 cards off the top of the deck and flip them over. This is the first pile. The second pile is just the remaining 39 cards as they started.
This works because if there are N face-up cards in within the first 13 cards, then there will be (13 - N) face up cards in the remaining 39 cards. When you flip those first 13 cards, N of which are face-up, there will now be N cards face-down, and therefore (13 - N) cards face-up, which, as stated, is the same number of face-up cards in the second pile.

Two words are anagrams if and only if they contain the exact same letters with the exact same frequency (for example, "name" and "mean" are anagrams, but "red" and "deer" are not).
Given two strings S1 and S2, which each only contain the lowercase letters a through z, write a program to determine if S1 and S2 are anagrams. The program must have a running time of O(n + m), where n and m are the lengths of S1 and S2, respectively, and it must have O(1) (constant) space usage.

First create an array A of length 26, representing the counts of each letter of the alphabet, with each value initialized to 0. Iterate through each character in S1 and add 1 to the corresponding entry in A. Once this iteration is complete, A will contain the counts for the letters in S1. Then, iterate through each character in S2, and subtract 1 from each corresponding entry in A. Now, if the each entry in A is 0, then S1 and S2 are anagrams; otherwise, S1 and S2 aren't anagrams.
Here is pseudocode for the procedure that was described:
def areAnagrams(S1, S2)
A = new Array(26)
A.initializeValues(0)
for each character in S1
arrayIndex = mapCharacterToNumber(character) //maps "a" to 0, "b" to 1, "c" to 2, etc...
A[arrayIndex] += 1
end
for each character in S2
arrayIndex = mapCharacterToNumber(character)
A[arrayIndex] -= 1
end
for (i = 0; i < 26; i++)
if A[i] != 0
return false
end
end
return true
end

Mick and John were in a 100 meter race. When Mick crossed the finish line, John was only at the 90 meter mark. Mick suggested they run another race. This time, Mick would start ten meters behind the starting line. All other things being equal, will John win, lose, or will it be a tie in the second race?

John will lose again. In the second race, Mick started ten meters back. By the time John reaches the 90 meter mark, Mick will have caught up him. Therefore, the final ten meters will belong to the faster of the two. Since Mick is faster than John, he will win the final 10 meters and of course the race.

How can you divide a pizza into 8 equal slices using only 3 straight cuts?

Cut 1: Cut the pizza straight down the middle into two halves.
Cut 2: Keeping the two halves in the place, cut the pizza straight down the middle at right angles to the first cut (you will be left with 4 equal quarters)
Cut 3: Pile the 4 quarters on top of each other and cut through the middle of the pile. You will be left with 8 equal slices.

You have been given the task of transporting 3,000 apples 1,000 miles from Appleland to Bananaville. Your truck can carry 1,000 apples at a time. Every time you travel a mile towards Bananaville you must pay a tax of 1 apple but you pay nothing when going in the other direction (towards Appleland). What is highest number of apples you can get to Bananaville?

833 apples.
Step one: First you want to make 3 trips of 1,000 apples 333 miles. You will be left with 2,001 apples and 667 miles to go.
Step two: Next you want to take 2 trips of 1,000 apples 500 miles. You will be left with 1,000 apples and 167 miles to go (you have to leave an apple behind).
Step three: Finally, you travel the last 167 miles with one load of 1,000 apples and are left with 833 apples in Bananaville.