Riddle #505

Similar riddles

See also best riddles or new riddles.

logicmath

Can you arrange four 9's and use of at most 2 math symbols, make the total be 100?
99 / .99 or 99 + 9/9
78.55 %
62 votes
logicmath

You have a basket of infinite size (meaning it can hold an infinite number of objects). You also have an infinite number of balls, each with a different number on it, starting at 1 and going up (1, 2, 3, etc...). A genie suddenly appears and proposes a game that will take exactly one minute. The game is as follows: The genie will start timing 1 minute on his stopwatch. Where there is 1/2 a minute remaining in the game, he'll put balls 1, 2, and 3 into the basket. At the exact same moment, you will grab a ball out of the basket (which could be one of the balls he just put in, or any ball that is already in the basket) and throw it away. Then when 3/4 of the minute has passed, he'll put in balls 4, 5, and 6, and again, you'll take a ball out and throw it away. Similarly, at 7/8 of a minute, he'll put in balls 7, 8, and 9, and you'll take out and throw away one ball. Similarly, at 15/16 of a minute, he'll put in balls 10, 11, and 12, and you'll take out and throw away one ball. And so on....After the minute is up, the genie will have put in an infinite number of balls, and you'll have thrown away an infinite number of balls. Assume that you pull out a ball at the exact same time the genie puts in 3 balls, and that the amount of time this takes is infinitesimally small. You are allowed to choose each ball that you pull out as the game progresses (for example, you could choose to always pull out the ball that is divisible by 3, which would be 3, then 6, then 9, and so on...). You play the game, and after the minute is up, you note that there are an infinite number of balls in the basket. The next day you tell your friend about the game you played with the genie. "That's weird," your friend says. "I played the exact same game with the genie yesterday, except that at the end of my game there were 0 balls left in the basket." How is it possible that you could end up with these two different results?
Your strategy for choosing which ball to throw away could have been one of many. One such strategy that would leave an infinite number of balls in the basket at the end of the game is to always choose the ball that is divisible by 3 (so 3, then 6, then 9, and so on...). Thus, at the end of the game, any ball of the format 3n+1 (i.e. 1, 4, 7, etc...), or of the format 3n+2 (i.e. 2, 5, 8, etc...) would still be in the basket. Since there will be an infinite number of such balls that the genie has put in, there will be an infinite number of balls in the basket. Your friend could have had a number of strategies for leaving 0 balls in the basket. Any strategy that guarantees that every ball n will be removed after an infinite number of removals will result in 0 balls in the basket. One such strategy is to always choose the lowest-numbered ball in the basket. So first 1, then 2, then 3, and so on. This will result in an empty basket at the game's end. To see this, assume that there is some ball in the basket at the end of the game. This ball must have some number n. But we know this ball was thrown out after the n-th round of throwing balls away, so it couldn't be in there. This contradiction shows that there couldn't be any balls left in the basket at the end of the game. An interesting aside is that your friend could have also used the strategy of choosing a ball at random to throw away, and this would have resulted in an empty basket at the end of the game. This is because after an infinite number of balls being thrown away, the probability of any given ball being thrown away reaches 100% when they are chosen at random.
78.00 %
66 votes
logicmath

If, Fernando + Alonso + McLaren = 6 Fernando x Alonso = 2 Alonso x McLaren = 6 Then, McLaren x Fernando = ?
3 or 0.75 Explanation: Rewriting the last 2 equations in terms of Alonso, Fernando = 2/Alonso McLaren = 6/Alonso Replacing above values in equation "Fernando + Alonso + McLaren = 6" 2/Alonso + Alonso + 6/Alonso =6 (2 + Alonso^2 + 6)/Alonso = 6 8 + Alonso^2 = 6Alonso Alonso^2 - 6Alonso + 8 = 0 (Alonso - 4) (Alonso - 2) = 0 Therefore; Alonso = 4 or 2 Let's take value of Alonso as 2 Fernando = 2/2 = 1 McLaren = 6/2 = 3 Therefore; McLaren x Fernando = 3 x 1 = 3 Let's take value of Alonso as 4 Fernando = 2/4 = 0.5 McLaren = 6/4 = 1.5 Therefore; McLaren x Fernando = 1.5 x 0.5 = 0.75
77.88 %
60 votes
interviewlogicmath

Four people need to cross a rickety bridge at night. Unfortunately, they have only one torch and the bridge is too dangerous to cross without one. The bridge is only strong enough to support two people at a time. Not all people take the same time to cross the bridge. Times for each person: 1 min, 2 mins, 7 mins and 10 mins. What is the shortest time needed for all four of them to cross the bridge?
It is 17 mins. 1 and 2 go first, then 1 comes back. Then 7 and 10 go and 2 comes back. Then 1 and 2 go again, it makes a total of 17 minutes.
77.76 %
54 votes
logictrickyinterview

The Pope, Beyonce, POTUS, and Bill Gates are on the same plane. There are only 3 parachutes left for the 4 of them. POTUS says: "As the President, I think I should have the right to have a parachute, because I rule millions of people in the greatest nation of all." Beyonce says: "As one of the greatest singers of all-time, I think I should deserve to be safe. I bring tears and laughter to millions of people, and I'm an important contributor to pop music." Bill Gates says: "As one of the richest successful company owners, I think I should live because I'm on top of the economics cycle, creating jobs and incomes for millions of people. I am a wealthy and intelligent man." Finally, the Pope says: "I'm an old, religious man. I lived a life that's full, I helped millions of people find their way through God, I'm ready to let go of a parachute and to face my fate." Which one of them will abandon the parachute and die?
Did I ever mention that the plane was crashing? No one's gonna die.
77.59 %
97 votes
interviewlogicmath

A bad king has a cellar of 1000 bottles of delightful and very expensive wine. A neighboring queen plots to kill the bad king and sends a servant to poison the wine. Fortunately (or say unfortunately) the bad king's guards catch the servant after he has only poisoned one bottle. Alas, the guards don't know which bottle but know that the poison is so strong that even if diluted 100,000 times it would still kill the king. Furthermore, it takes one month to have an effect. The bad king decides he will get some of the prisoners in his vast dungeons to drink the wine. Being a clever bad king he knows he needs to murder no more than 10 prisoners – believing he can fob off such a low death rate – and will still be able to drink the rest of the wine (999 bottles) at his anniversary party in 5 weeks time. Explain what is in mind of the king, how will he be able to do so?
Think in terms of binary numbers. (now don’t read the solution, give a try). Number the bottles 1 to 1000 and write the number in binary format. bottle 1 = 0000000001 (10 digit binary) bottle 2 = 0000000010 bottle 500 = 0111110100 bottle 1000 = 1111101000 Now take 10 prisoners and number them 1 to 10, now let prisoner 1 take a sip from every bottle that has a 1 in its least significant bit. Let prisoner 10 take a sip from every bottle with a 1 in its most significant bit. etc. prisoner = 10 9 8 7 6 5 4 3 2 1 bottle 924 = 1 1 1 0 0 1 1 1 0 0 For instance, bottle no. 924 would be sipped by 10,9,8,5,4 and 3. That way if bottle no. 924 was the poisoned one, only those prisoners would die. After four weeks, line the prisoners up in their bit order and read each living prisoner as a 0 bit and each dead prisoner as a 1 bit. The number that you get is the bottle of wine that was poisoned. 1000 is less than 1024 (2^10). If there were 1024 or more bottles of wine it would take more than 10 prisoners.
77.59 %
97 votes
logicmathsimplecleanclever

There are 100 ants on a board that is 1 meter long, each facing either left or right and walking at a pace of 1 meter per minute. The board is so narrow that the ants cannot pass each other; when two ants walk into each other, they each instantly turn around and continue walking in the opposite direction. When an ant reaches the end of the board, it falls off the edge. From the moment the ants start walking, what is the longest amount of time that could pass before all the ants have fallen off the plank? You can assume that each ant has infinitely small length.
The longest amount of time that could pass would be 1 minute. If you were looking at the board from the side and could only see the silhouettes of the board and the ants, then when two ants walked into each other and turned around, it would look to you as if the ants had walked right by each other. In fact, the effect of two ants walking into each other and then turning around is essentially the same as two ants walking past one another: we just have two ants at that point walking in opposite directions. So we can treat the board as if the ants are walking past each other. In this case, the longest any ant can be on the board is 1 minute (since the board is 1 meter long and the ants walk at 1 meter per minute). Thus, after 1 minute, all the ants will be off the board.
77.36 %
64 votes