Three ants are sitting at the three corners of an equilateral triangle. Each ant starts randomly picks a direction and starts to move along the edge of the triangle. What is the probability that none of the ants collide?

So let’s think this through. The ants can only avoid a collision if they all decide to move in the same direction (either clockwise or anti-clockwise). If the ants do not pick the same direction, there will definitely be a collision. Each ant has the option to either move clockwise or anti-clockwise. There is a one in two chance that an ant decides to pick a particular direction. Using simple probability calculations, we can determine the probability of no collision.
P(No collision) = P(All ants go in a clockwise direction) + P( All ants go in an anti-clockwise direction) = 0.5 * 0.5 * 0.5 + 0.5 * 0.5 * 0.5 = 0.25

There are 1 million closed school lockers in a row, labeled 1 through 1,000,000.
You first go through and flip every locker open.
Then you go through and flip every other locker (locker 2, 4, 6, etc...). When you're done, all the even-numbered lockers are closed.
You then go through and flip every third locker (3, 6, 9, etc...). "Flipping" mean you open it if it's closed, and close it if it's open. For example, as you go through this time, you close locker 3 (because it was still open after the previous run through), but you open locker 6, since you had closed it in the previous run through.
Then you go through and flip every fourth locker (4, 8, 12, etc...), then every fifth locker (5, 10, 15, etc...), then every sixth locker (6, 12, 18, etc...) and so on. At the end, you're going through and flipping every 999,998th locker (which is just locker 999,998), then every 999,999th locker (which is just locker 999,999), and finally, every 1,000,000th locker (which is just locker 1,000,000).
At the end of this, is locker 1,000,000 open or closed?

Locker 1,000,000 will be open.
If you think about it, the number of times that each locker is flipped is equal to the number of factors it has. For example, locker 12 has factors 1, 2, 3, 4, 6, and 12, and will thus be flipped 6 times (it will end be flipped when you flip every one, every 2nd, every 3rd, every 4th, every 6th, and every 12th locker). It will end up closed, since flipping an even number of times will return it to its starting position. You can see that if a locker number has an even number of factors, it will end up closed. If it has an odd number of factors, it will end up open.
As it turns out, the only types of numbers that have an odd number of factors are squares. This is because factors come in pairs, and for squares, one of those pairs is the square root, which is duplicated and thus doesn't count twice as a factor. For example, 12's factors are 1 x 12, 2 x 6, and 3 x 4 (6 total factors). On the other hand, 16's factors are 1 x 16, 2 x 8, and 4 x 4 (5 total factors).
So lockers 1, 4, 9, 16, 25, etc... will all be open. Since 1,000,000 is a square number (1000 x 1000), it will be open as well.

Two trains are traveling toward each other on the same track, each at 60 miles per hour. When they are exactly 120 miles apart, a fly takes off from the front of one of the trains, flying toward the other train at a constant rate of 100 miles per hour. When the fly reaches the other train, it instantly changes directions and starts flying toward the other train, still at 100 miles per hour. It keeps doing this back and forth until the trains finally collide.
If you add up all the distances back and forth that the fly has travelled, how much total distance has the fly travelled when the trains finally collide?

The fly has travelled exactly 100 miles. We can figure this out using some simple math. Becuase the trains are 120 miles apart when the fly takes off, and are travelling at 60 mph each, they will collide in exactly 1 hour. This gives the fly exactly 1 hour of flying time, going at a speed of 100 miles per hour. Thus, the fly will travel 100 miles in this hour.

Consider the following explanation for why 1=2:
1. Start out Let y = x
2. Multiply through by x xy = x2
3. Subtract y2 from each side xy - y2 = x2 - y2
4. Factor each side y(x-y) = (x+y)(x-y)
5. Divide both sides by (x-y) y = x+y
6. Divide both sides by y y/y = x/y + y/y
7. And so... 1 = x/y + 1
8. Since x=y, x/y = 1 1 = 1 + 1
8. And so... 1 = 2
How is this possible?

Step 5 is invalid, because we are dividing by (x-y), and since x=y, we are thus dividing by 0. This is an invalid mathematical operation (division by 0), and so by not followinng basic mathematical rules, we are able to get strange results like these.

Note: This riddle must be done IN YOUR HEAD ONLY and NOT using paper and a pen.
Take 1000 and add 40 to it.
Now add another 1000.
Now add 30.
Another 1000.
Now add 20.
Now add another 1000.
Now add 10.
What is the total?

The answer is 4100, check it out on a calculator. Did you think it was 5000? Most people add the 100 as 1000 by mistake.

How to measure exactly 4 gallon of water from 3 gallon and 5 gallon jars, given, you have unlimited water supply from a running tap.

Step 1. Fill 3 gallon jar with water. ( 5p – 0, 3p – 3)
Step 2. Pour all its water into 5 gallon jar. (5p – 3, 3p – 0)
Step 3. Fill 3 gallon jar again. ( 5p – 3, 3p – 3)
Step 4. Pour its water into 5 gallon jar untill it is full. Now you will have exactly 1 gallon water remaining in 3 gallon jar. (5p – 5, 3p – 1)
Step 5. Empty 5 gallon jar, pour 1 gallon water from 3 gallon jar into it. Now 5 gallon jar has exactly 1 gallon of water. (5p – 1, 3p – 0)
Step 6. Fill 3 gallon jar again and pour all its water into 5 gallon jar, thus 5 gallon jar will have exactly 4 gallon of water. (5p – 4, 3p – 0)

A farmer lived in a small village. He had three sons. One day he gave $100 dollars to his sons and told them to go to market. The three sons should buy 100 animals for $100 dollars. In the market there were chickens, hens and goats. Cost of a goat is $10, cost of a hen is $5 and cost of a chicken is $0.50.
There should be at least one animal from each group. The farmer’s sons should spend all the money on buying animals. There should be 100 animals, not a single animal more or less! What do the sons buy?

They purchased 100 animals for 100 dollars.
$10 spent to purchase 1 goat.
$45 spent to purchase 9 hens.
$45 spent to purchase 90 chickens.