Riddle #850

logicmath

Note: This riddle must be done IN YOUR HEAD ONLY and NOT using paper and a pen. Take 1000 and add 40 to it. Now add another 1000. Now add 30. Another 1000. Now add 20. Now add another 1000. Now add 10. What is the total?
The answer is 4100, check it out on a calculator. Did you think it was 5000? Most people add the 100 as 1000 by mistake.
75.18 %
58 votes

Similar riddles

See also best riddles or new riddles.

simplelogicmathcleverclean

An infinite number of mathematicians are standing behind a bar. The first asks the barman for half a pint of beer, the second for a quarter pint, the third an eighth, and so on. How many pints of beer will the barman need to fulfill all mathematicians' wishes?
Just one.
76.19 %
91 votes
logicmath

There are 1 million closed school lockers in a row, labeled 1 through 1,000,000. You first go through and flip every locker open. Then you go through and flip every other locker (locker 2, 4, 6, etc...). When you're done, all the even-numbered lockers are closed. You then go through and flip every third locker (3, 6, 9, etc...). "Flipping" mean you open it if it's closed, and close it if it's open. For example, as you go through this time, you close locker 3 (because it was still open after the previous run through), but you open locker 6, since you had closed it in the previous run through. Then you go through and flip every fourth locker (4, 8, 12, etc...), then every fifth locker (5, 10, 15, etc...), then every sixth locker (6, 12, 18, etc...) and so on. At the end, you're going through and flipping every 999,998th locker (which is just locker 999,998), then every 999,999th locker (which is just locker 999,999), and finally, every 1,000,000th locker (which is just locker 1,000,000). At the end of this, is locker 1,000,000 open or closed?
Locker 1,000,000 will be open. If you think about it, the number of times that each locker is flipped is equal to the number of factors it has. For example, locker 12 has factors 1, 2, 3, 4, 6, and 12, and will thus be flipped 6 times (it will end be flipped when you flip every one, every 2nd, every 3rd, every 4th, every 6th, and every 12th locker). It will end up closed, since flipping an even number of times will return it to its starting position. You can see that if a locker number has an even number of factors, it will end up closed. If it has an odd number of factors, it will end up open. As it turns out, the only types of numbers that have an odd number of factors are squares. This is because factors come in pairs, and for squares, one of those pairs is the square root, which is duplicated and thus doesn't count twice as a factor. For example, 12's factors are 1 x 12, 2 x 6, and 3 x 4 (6 total factors). On the other hand, 16's factors are 1 x 16, 2 x 8, and 4 x 4 (5 total factors). So lockers 1, 4, 9, 16, 25, etc... will all be open. Since 1,000,000 is a square number (1000 x 1000), it will be open as well.
76.19 %
81 votes
logicmathsimpleclean

I know a number which when multiplied by multiple of 9 i.e 9 18 27 36 45 ... The output consist of number containing only one digit. Can you identify the number?
12345679 12345679 × 9 = 111111111 (only 1s) 12345679 × 18 = 222222222 (only 2s) 12345679 × 27 = 333333333 (only 3s) 12345679 × 36 = 444444444 (only 4s) 12345679 × 45 = 555555555 (only 5s)
76.01 %
55 votes
interviewlogicmath

Three ants are sitting at the three corners of an equilateral triangle. Each ant starts randomly picks a direction and starts to move along the edge of the triangle. What is the probability that none of the ants collide?
So let’s think this through. The ants can only avoid a collision if they all decide to move in the same direction (either clockwise or anti-clockwise). If the ants do not pick the same direction, there will definitely be a collision. Each ant has the option to either move clockwise or anti-clockwise. There is a one in two chance that an ant decides to pick a particular direction. Using simple probability calculations, we can determine the probability of no collision. P(No collision) = P(All ants go in a clockwise direction) + P( All ants go in an anti-clockwise direction) = 0.5 * 0.5 * 0.5 + 0.5 * 0.5 * 0.5 = 0.25
76.01 %
55 votes
logicmath

A farmer lived in a small village. He had three sons. One day he gave $100 dollars to his sons and told them to go to market. The three sons should buy 100 animals for $100 dollars. In the market there were chickens, hens and goats. Cost of a goat is $10, cost of a hen is $5 and cost of a chicken is $0.50. There should be at least one animal from each group. The farmer’s sons should spend all the money on buying animals. There should be 100 animals, not a single animal more or less! What do the sons buy?
They purchased 100 animals for 100 dollars. $10 spent to purchase 1 goat. $45 spent to purchase 9 hens. $45 spent to purchase 90 chickens.
75.95 %
60 votes
logicmathsimpleclean

Is half of two plus two equal to two or three?
Three. It seems that it could almost be either, but if you follow the mathematical orders of operation, division is performed before addition. So... half of two is one. Then add two, and the answer is three.
75.95 %
60 votes
logicmathclean

You are visiting NYC when a man approaches you. "Not counting bald people, I bet a hundred bucks that there are two people living in New York City with the same number of hairs on their heads," he tells you. "I'll take that bet!" you say. You talk to the man for a minute, after which you realize you have lost the bet. What did the man say to prove his case?
This is a classic example of the pigeonhole principle. The argument goes as follows: assume that every non-bald person in New York City has a different number of hairs on their head. Since there are about 9 million people living in NYC, let's say 8 million of them aren't bald. So 8 million people need to have different numbers of hairs on their head. But on average, people only have about 100,000 hairs. So even if there was someone with 1 hair, someone with 2 hairs, someone with 3 hairs, and so on, all the way up to someone with 100,000 hairs, there are still 7,900,000 other people who all need different numbers of hairs on their heads, and furthermore, who all need MORE than 100,000 hairs on their head. You can see that additionally, at least one person would need to have at least 8,000,000 hairs on their head, because there's no way to have 8,000,000 people all have different numbers of hairs between 1 and 7,999,999. But someone having 8,000,000 is an essential impossibility (as is even having 1,000,000 hairs), So there's no way this situation could be the case, where everyone has a different number of hairs. Which means that at least two people have the same number of hairs.
75.92 %
65 votes
logicmathsimpleclean

How to measure exactly 4 gallon of water from 3 gallon and 5 gallon jars, given, you have unlimited water supply from a running tap.
Step 1. Fill 3 gallon jar with water. ( 5p – 0, 3p – 3) Step 2. Pour all its water into 5 gallon jar. (5p – 3, 3p – 0) Step 3. Fill 3 gallon jar again. ( 5p – 3, 3p – 3) Step 4. Pour its water into 5 gallon jar untill it is full. Now you will have exactly 1 gallon water remaining in 3 gallon jar. (5p – 5, 3p – 1) Step 5. Empty 5 gallon jar, pour 1 gallon water from 3 gallon jar into it. Now 5 gallon jar has exactly 1 gallon of water. (5p – 1, 3p – 0) Step 6. Fill 3 gallon jar again and pour all its water into 5 gallon jar, thus 5 gallon jar will have exactly 4 gallon of water. (5p – 4, 3p – 0)
75.91 %
80 votes
logicmath

You have 25 horses. When they race, each horse runs at a different, constant pace. A horse will always run at the same pace no matter how many times it races. You want to figure out which are your 3 fastest horses. You are allowed to race at most 5 horses against each other at a time. You don't have a stopwatch so all you can learn from each race is which order the horses finish in. What is the least number of races you can conduct to figure out which 3 horses are fastest?
You need to conduct 7 races. First, separate the horses into 5 groups of 5 horses each, and race the horses in each of these groups. Let's call these groups A, B, C, D and E, and within each group let's label them in the order they finished. So for example, in group A, A1 finished 1st, A2 finished 2nd, A3 finished 3rd, and so on. We can rule out the bottom two finishers in each race (A4 and A5, B4 and B5, C4 and C5, D4 and D5, and E4 and E5), since we know of at least 3 horses that are faster than them (specifically, the horses that beat them in their respective races). This table shows our remaining horses: A1 B1 C1 D1 E1 A2 B2 C2 D2 E2 A3 B3 C3 D3 E3 For our 6th race, let's race the top finishers in each group: A1, B1, C1, D1 and E1. Let's assume that the order of finishers is: A1, B1, C1, D1, E1 (so A1 finished first, E1 finished last). We now know that horse D1 cannot be in the top 3, because it is slower than C1, B1 and A1 (it lost to them in the 6th race). Thus, D2 and D3 can also not be in the to 3 (since they are slower than D1). Similarly, E1, E2 and E3 cannot be in the top 3 because they are all slower than D1 (which we already know isn't in the top 3). Let's look at our updated table, having removed these horses that can't be in the top 3: A1 B1 C1 A2 B2 C2 A3 B3 C3 We can actually rule out a few more horses. C2 and C3 cannot be in the top 3 because they are both slower than C1 (and thus are also slower than B1 and A1). And B3 also can't be in the top 3 because it is slower than B2 and B1 (and thus is also slower than A1). So let's further update our table: A1 B1 C1 A2 B2 A3 We actually already know that A1 is our fastest horse (since it directly or indirectly beat all the remaining horses). So now we just need to find the other two fastest horses out of A2, A3, B1, B2 and C1. So for our 7th race, we simply race these 5 horses, and the top two finishers, plus A1, are our 3 fastest horses.
75.90 %
75 votes
trickylogicmath

Tarun Asthnaiya go to his office by local train. However nearby train station is quite far from his place and he used to drive his bike to train station daily with an average speed of 60km/hr. One day at halfway point he relized that due to heavy traffic he got late having average speed of just 30km/hr. How fast he must drive for the rest of the way to catch my local train?
The train is just about to leave the station and there is no way Tarun will be able to catch it this time.
75.77 %
44 votes