Clever riddles for teens

logicmathcleanclever

What is the value of 1/2 of 2/3 of 3/4 of 4/5 of 5/6 of 6/7 of 7/8 of 8/9 of 9/10 of 1000?
100. Looks hard? Don't worry, just work it backwards and you'll find it very easy.
83.45 %
42 votes
logictrickycleverclean

Mr. Jason was walking along the sea shore. Suddenly it started drizzling and turned into a heavy rain. He wasn’t carrying any umbrella, not even any cap. He was completely wet and all his clothes were soaked in rain. Yet not even a single strand of his hair was wet! How was that possible?
Mr. Jason was bald.
83.05 %
49 votes
logicmathsimplecleanclever

There are 100 ants on a board that is 1 meter long, each facing either left or right and walking at a pace of 1 meter per minute. The board is so narrow that the ants cannot pass each other; when two ants walk into each other, they each instantly turn around and continue walking in the opposite direction. When an ant reaches the end of the board, it falls off the edge. From the moment the ants start walking, what is the longest amount of time that could pass before all the ants have fallen off the plank? You can assume that each ant has infinitely small length.
The longest amount of time that could pass would be 1 minute. If you were looking at the board from the side and could only see the silhouettes of the board and the ants, then when two ants walked into each other and turned around, it would look to you as if the ants had walked right by each other. In fact, the effect of two ants walking into each other and then turning around is essentially the same as two ants walking past one another: we just have two ants at that point walking in opposite directions. So we can treat the board as if the ants are walking past each other. In this case, the longest any ant can be on the board is 1 minute (since the board is 1 meter long and the ants walk at 1 meter per minute). Thus, after 1 minute, all the ants will be off the board.
83.05 %
49 votes
logicmathclever

You can easily "tile" an 8x8 chessboard with 32 2x1 tiles, meaning that you can place these 32 tiles on the board and cover every square. But if you take away two opposite corners from the chessboard, it becomes impossible to tile this new 62-square board. Can you explain why tiling this board isn't possible?
Color in the chessboard, alternating with red and blue tiles. Then color all of your tiles half red and half blue. Whenever you place a tile down, you can always make it so that the red part of the tile is on a red square and the blue part of the tile is on the blue square. Since you'll need to place 31 tiles on the board (to cover the 62 squares), you would have to be able to cover 31 red squares and 31 blue squares. But when you took away the two corners, you can see that you are taking away two red spaces, leaving 30 red squares and 32 blue squares. There is no way to cover 30 red squares and 32 blue squares with the 31 tiles, since these tiles can only cover 31 red squares and 31 blue squares, and thus, tiling this board is not possible.
83.05 %
49 votes
logiccleversimple

It was a grandeur party. In order to filter the uninvited guests, the security guard was assigned a task to check the secret password. The guests invited by the royal family also were shared with the secret password. John wasn't an invited guest. He learned that the password is needed to make an entry. He hides himself and started watching the guests and the security. The first guest comes. Security told him, TWELVE and the guest replied SIX. He wished him and allowed him to enter. The second guest comes. Security told him SIX and the guest replied THREE! He was too allowed. John made an entry as third guest. Security told him EIGHT and John replied FOUR. He was thrown out of the party! Why?
The answer should be five. The password is not half of the digit, but the number that represents the number of digits told by security.
82.72 %
48 votes
1234
MORE RIDDLES >
Page 1 of 11.