## Volume of the pizza

If you had a pizza with crust thickness 'a' and radius 'z', what's the volume of the pizza?

pi * z * z * a

If you had a pizza with crust thickness 'a' and radius 'z', what's the volume of the pizza?

pi * z * z * a

What has six faces, but does not wear makeup. It also has twenty-one eyes, but cannot see?

A die (dice).

Armored but not a knight, snapping but not a twig, and always at home, even on the move. What am I?

A turtle.

It is an insect, and the first part of its name is the name of another insect. What is it?

Beetle.

What flies without wings?

Time.

There are 100 ants on a board that is 1 meter long, each facing either left or right and walking at a pace of 1 meter per minute.
The board is so narrow that the ants cannot pass each other; when two ants walk into each other, they each instantly turn around and continue walking in the opposite direction. When an ant reaches the end of the board, it falls off the edge.
From the moment the ants start walking, what is the longest amount of time that could pass before all the ants have fallen off the plank? You can assume that each ant has infinitely small length.

The longest amount of time that could pass would be 1 minute.
If you were looking at the board from the side and could only see the silhouettes of the board and the ants, then when two ants walked into each other and turned around, it would look to you as if the ants had walked right by each other.
In fact, the effect of two ants walking into each other and then turning around is essentially the same as two ants walking past one another: we just have two ants at that point walking in opposite directions.
So we can treat the board as if the ants are walking past each other. In this case, the longest any ant can be on the board is 1 minute (since the board is 1 meter long and the ants walk at 1 meter per minute). Thus, after 1 minute, all the ants will be off the board.

An infinite number of mathematicians are standing behind a bar. The first asks the barman for half a pint of beer, the second for a quarter pint, the third an eighth, and so on. How many pints of beer will the barman need to fulfill all mathematicians' wishes?

Just one.

Two fathers and two sons went fishing one day. They were there the whole day and only caught 3 fish. One father said, that is enough for all of us, we will have one each. How can this be possible?

There was the father, his son, and his son's son. This equals 2 fathers and 2 sons for a total of 3!

A word I know,
Six letters it contains,
Subtract just one,
And twelve is what remains.

Dozens.

What does this rebus say? XLR8.

Accelerate.