## Subtract 5 from 25

How many times can you subtract 5 from 25?

Just once, because after you subtract anything from it, it's not 25 anymore.

How many times can you subtract 5 from 25?

Just once, because after you subtract anything from it, it's not 25 anymore.

See also best riddles or new riddles.

Two men working at a construction site were up for a challenge, and they were pretty mad at each other.
Finally, at lunch break, they confronted one another.
One man, obviously stronger, said "See that wheelbarrow? I'm willin' to bet $100 (that's all I have in my wallet here) that you can't wheel something to that cone and back that I can't do twice as far. Do you have a bet?"
The other man, too dignified to decline, shook his hand, but he had a plan formulating.
He looked at the objects lying around: a pile of 400 bricks, a steel beam, the 10 men that had gathered around to watch, his pickup truck, a stack of ten bags of concrete mix, and then he finalized his plan.
"All right," he said, and revealed his object.
That night, the strong man went home thoroughly teased and $100 poorer.
What did the other man choose?

He looked the man right in the eye and said "get in."

You are standing in a pitch-dark room. A friend walks up and hands you a normal deck of 52 cards. He tells you that 13 of the 52 cards are face-up, the rest are face-down. These face-up cards are distributed randomly throughout the deck.
Your task is to split up the deck into two piles, using all the cards, such that each pile has the same number of face-up cards. The room is pitch-dark, so you can't see the deck as you do this.
How can you accomplish this seemingly impossible task?

Take the first 13 cards off the top of the deck and flip them over. This is the first pile. The second pile is just the remaining 39 cards as they started.
This works because if there are N face-up cards in within the first 13 cards, then there will be (13 - N) face up cards in the remaining 39 cards. When you flip those first 13 cards, N of which are face-up, there will now be N cards face-down, and therefore (13 - N) cards face-up, which, as stated, is the same number of face-up cards in the second pile.

In a small town in the United States, a teenage boy asked his parents if he could go to a friend's party. His parents agreed, provided that he was back before sunrise. He left the house that evening clean-shaven and when he returned just before the following sunrise his parents were amazed to see that he had a fully grown beard. What happened?

The small town was Barrow in Alaska, the northernmost town in the United States. When the sun sets there in the middle of November, it does not rise again for 65 days. That allowed plenty of time for the boy to grow a beard before the next sunrise.

How many times do a clock's hands overlap in a day?

22 times.
am
12:00
1:05
2:11
3:16
4:22
5:27
6:33
7:38
8:44
9:49
10:55
pm
12:00
1:05
2:11
3:16
4:22
5:27
6:33
7:38
8:44
9:49
10:55

Create a number using only the digits 4,4,3,3,2,2,1 and 1.
So I can only be eight digits.
You have to make sure the ones are separated by one digit, the twos are separated by two digits the threes are separated with three digits and the fours are separated by four digits.

41312432.

You are standing in a house in the middle of the countryside. There is a small hole in one of the interior walls of the house, through which 100 identical wires are protruding.
From this hole, the wires run underground all the way to a small shed exactly 1 mile away from the house, and are protruding from one of the shed's walls so that they are accessible from inside the shed.
The ends of the wires coming out of the house wall each have a small tag on them, labeled with each number from 1 to 100 (so one of the wires is labeled "1", one is labeled "2", and so on, all the way through "100"). Your task is to label the ends of the wires protruding from the shed wall with the same number as the other end of the wire from the house (so, for example, the wire with its end labeled "47" in the house should have its other end in the shed labeled "47" as well).
To help you label the ends of the wires in the shed, there are an unlimited supply of batteries in the house, and a single lightbulb in the shed. The way it works is that in the house, you can take any two wires and attach them to a single battery. If you then go to the shed and touch those two wires to the lightbulb, it will light up. The lightbulb will only light up if you touch it to two wires that are attached to the same battery. You can use as many of the batteries as you want, but you cannot attach any given wire to more than one battery at a time. Also, you cannot attach more than two wires to a given battery at one time. (Basically, each battery you use will have exactly two wires attached to it). Note that you don't have to attach all of the wires to batteries if you don't want to.
Your goal, starting in the house, is to travel as little distance as possible in order to label all of the wires in the shed.
You tell a few friends about the task at hand.
"That will require you to travel 15 miles!" of of them exclaims.
"Pish posh," yells another. "You'll only have to travel 5 miles!"
"That's nonsense," a third replies. "You can do it in 3 miles!"
Which of your friends is correct? And what strategy would you use to travel that number of miles to label all of the wires in the shed?

Believe it or not, you can do it travelling only 3 miles!
The answer is rather elegant. Starting from the house, don't attach wires 1 and 2 to any batteries, but for the remaining wires, attach them in consecutive pairs to batteries (so attach wires 3 and 4 to the same battery, attach wires 5 and 6 to the same battery, and so on all the way through wires 99 and 100).
Now travel 1 mile to the shed, and using the lightbulb, find all pairs of wires that light it up. Put a rubberband around each pair or wires that light up the lightbulb. The two wires that don't light up any lightbulbs are wires 1 and 2 (though you don't know yet which one of them is wire 1 and which is wire 2). Put a rubberband around this pair of wires as well, but mark it so you remember that they are wires 1 and 2.
Now go 1 mile back to the house, and attach odd-numbered wires to batteries in the following pairs: (1 and 3), (5 and 7), (9 and 11), and so on, all the way through (97 and 99).
Similarly, attach even-numbered wires to batteries in the following pairs: (4 and 6), (8 and 10), (12 and 14), and so on, all the way through (96 and 98).
Note that in this round, we didn't attach wire 2 or wire 100 to any batteries.
Finally, travel 1 mile back to the shed. You're now in a position to label all of the wires here.
First, remember we know the pair of wires that are, collectively, wires 1 and 2. So test wires 1 and 2 with all the other wires to see what pair lights up the lightbulb. The wire from wires 1 and 2 that doesn't light up the bulb is wire 2 (which, remember, we didn't connect to a battery), and the other is wire 1, so we can label these as such. Furthermore, the wire that, with wire 1, lights up a lightbulb, is wire 3 (remember how we connected the wires this round).
Now, the other wire in the rubber band with wire 3 is wire 4 (we know this from the first round), and the wire that, with wire 4, lights up the lightbulb, is wire 6 (again, because of how we connected the wires to batteries this round). We can continue labeling batteries this way (next we'll label wire 7, which is rubber-banded to wire 6, and then we'll label wire 9, which lights up the lightbulb with wire 7, and so on). At the end, we'll label wire 97, and then wire 99 (which lights up the lightbulb with wire 97), and finally wire 100 (which isn't connected to a battery this round, but is rubber-banded to wire 99).
And we're done, having travelled only 3 miles!

Every day, Jack arrives at the train station from work at 5 pm. His wife leaves home in her car to meet him there at exactly 5 pm, and drives him home. One day, Jack gets to the station an hour early, and starts walking home, until his wife meets him on the road. They get home 30 minutes earlier than usual. How long was he walking? Distances are unspecified. Speeds are unspecified, but constant. Give a number which represents the answer in minutes.

The best way to think about this problem is to consider it from the perspective of the wife. Her round trip was decreased by 30 minutes, which means each leg of her trip was decreased by 15 minutes. Jack must have been walking for 45 minutes.

When Manish was three years old he carved a nail into his favorite tree to mark his height. Six years later at age nine, Manish returned to see how much higher the nail was. If the tree grew by five centimeters each year, how much higher would the nail be.

The nail would be at the same height since trees grow at their tops.

Two trains are traveling toward each other on the same track, each at 60 miles per hour. When they are exactly 120 miles apart, a fly takes off from the front of one of the trains, flying toward the other train at a constant rate of 100 miles per hour. When the fly reaches the other train, it instantly changes directions and starts flying toward the other train, still at 100 miles per hour. It keeps doing this back and forth until the trains finally collide.
If you add up all the distances back and forth that the fly has travelled, how much total distance has the fly travelled when the trains finally collide?

The fly has travelled exactly 100 miles. We can figure this out using some simple math. Becuase the trains are 120 miles apart when the fly takes off, and are travelling at 60 mph each, they will collide in exactly 1 hour. This gives the fly exactly 1 hour of flying time, going at a speed of 100 miles per hour. Thus, the fly will travel 100 miles in this hour.

There are 5 pirates in a ship. Pirates have hierarchy C1, C2, C3, C4 and C5. C1 designation is the highest and C5 is the lowest.
These pirates have three characteristics:
a. Every pirate is so greedy that he can even take lives to make more money.
b. Every pirate desperately wants to stay alive.
c. They are all very intelligent.
There are total 100 gold coins on the ship. The person with the highest designation on the deck is expected to make the distribution. If the majority on the deck does not agree to the distribution proposed, the highest designation pirate will be thrown out of the ship (or simply killed). The first priority of the pirates is to stay alive and second to maximize the gold they get. Pirate 5 devises a plan which he knows will be accepted for sure and will maximize his gold. What is his plan?

To understand the answer,we need to reduce this problem to only 2 pirates. So what happens if there are only 2 pirates. Pirate 2 can easily propose that he gets all the 100 gold coins. Since he constitutes 50% of the pirates, the proposal has to be accepted leaving Pirate 1 with nothing.
Now let's look at 3 pirates situation, Pirate 3 knows that if his proposal does not get accepted, then pirate 2 will get all the gold and pirate 1 will get nothing. So he decides to bribe pirate 1 with one gold coin. Pirate 1 knows that one gold coin is better than nothing so he has to back pirate 3. Pirate 3 proposes {pirate 1, pirate 2, pirate 3} {1, 0, 99}. Since pirate 1 and 3 will vote for it, it will be accepted.
If there are 4 pirates, pirate 4 needs to get one more pirate to vote for his proposal. Pirate 4 realizes that if he dies, pirate 2 will get nothing (according to the proposal with 3 pirates) so he can easily bribe pirate 2 with one gold coin to get his vote. So the distribution will be {0, 1, 0, 99}.
Smart right?
Now can you figure out the distribution with 5 pirates? Let's see. Pirate 5 needs 2 votes and he knows that if he dies, pirate 1 and 3 will get nothing. He can easily bribe pirates 1 and 3 with one gold coin each to get their vote. In the end, he proposes {1, 0, 1, 0, 98}. This proposal will get accepted and provide the maximum amount of gold to pirate 5.