You have two lengths of rope. Each rope has the property that if you light it on fire at one end, it will take exactly 60 minutes to burn to the other end. Note that the ropes will not burn at a consistent speed the entire time (for example, it's possible that the first 90% of a rope will burn in 1 minute, and the last 10% will take the additional 59 minutes to burn).
Given these two ropes and a matchbook, can you find a way to measure out exactly 45 minutes?

The key observation here is that if you light a rope from both ends at the same time, it will burn in 1/2 the time it would have burned in if you had lit it on just one end.
Using this insight, you would light both ends of one rope, and one end of the other rope, all at the same time. The rope you lit at both ends will finish burning in 30 minutes. Once this happens, light the second end of the second rope. It will burn for another 15 minutes (since it would have burned for 30 more minutes without lighting the second end), completing the 45 minutes.

You are on a gameshow and the host shows you three doors. Behind one door is a suitcase with $1 million in it, and behind the other two doors are sacks of coal. The host tells you to choose a door, and that the prize behind that door will be yours to keep.
You point to one of the three doors. The host says, "Before we open the door you pointed to, I am going to open one of the other doors." He points to one of the other doors, and it swings open, revealing a sack of coal behind it.
"Now I will give you a choice," the host tells you. "You can either stick with the door you originally chose, or you can choose to switch to the other unopened door."
Should you switch doors, stick with your original choice, or does it not matter?

You should switch doors.
There are 3 possibilities for the first door you picked:
You picked the first wrong door - so if you switch, you win
You picked the other wrong door - again, if you switch, you win
You picked the correct door - if you switch, you lose
Each of these cases are equally likely. So if you switch, there is a 2/3 chance that you will win (because there is a 2/3 chance that you are in one of the first two cases listed above), and a 1/3 chance you'll lose. So switching is a good idea.
Another way to look at this is to imagine that you're on a similar game show, except with 100 doors. 99 of those doors have coal behind them, 1 has the money. The host tells you to pick a door, and you point to one, knowing almost certainly that you did not pick the correct one (there's only a 1 in 100 chance). Then the host opens 98 other doors, leave only the door you picked and one other door closed. We know that the host was forced to leave the door with money behind it closed, so it is almost definitely the door we did not pick initially, and we would be wise to switch.
Search: Monty Hall problem

We all know that square root of number 121 is 11. But do you know what si the square root of the number "12345678987654321" ?

111111111
Explanation:
It's a maths magical square root series as :
Square root of number 121 is 11
Square root of number 12321 is 111
Square root of number 1234321 is 1111
Square root of number 123454321 is 11111
Square root of number 12345654321 is 111111
Square root of number 1234567654321 is 1111111
Square root of number 123456787654321 is 11111111
Square root of number 12345678987654321 is 111111111 (answer)

An old man wanted to leave all of his money to one of his three sons, but he didn't know which one he should give it to. He gave each of them a few coins and told them to buy something that would be able to fill their living room. The first man bought straw, but there was not enough to fill the room. The second bought some sticks, but they still did not fill the room. The third man bought two things that filled the room, so he obtained his father's fortune. What were the two things that the man bought?

The wise son bought a candle and a box of matches. After lighting the candle, the light filled the entire room.

Betty signals to the headwaiter in a restaurant, and says, "There is a fly in my tea."
The waiter says "No problem Madam. I will bring you a fresh cup of tea."
A few minutes later Betty shouts, "Get me the manager! This is the same cup of tea."
How did she know?
Hint: The tea is still hot.

Betty had already put sugar in her tea before sending it back. When the "new" cup came, it was already tasted sweet.

Jay escaped from jail and headed to the country. While walking along a rural road, he saw a police car speeding towards him. Jay ran toward it for a short time and then fled into the woods. Why did he run toward the car?

Jay was just starting to cross a bridge when he saw a police car. He ran toward the car to get off the bridge before running into the woods.