Best hard riddles

logicmath

You have been given the task of transporting 3,000 apples 1,000 miles from Appleland to Bananaville. Your truck can carry 1,000 apples at a time. Every time you travel a mile towards Bananaville you must pay a tax of 1 apple but you pay nothing when going in the other direction (towards Appleland). What is highest number of apples you can get to Bananaville?
833 apples. Step one: First you want to make 3 trips of 1,000 apples 333 miles. You will be left with 2,001 apples and 667 miles to go. Step two: Next you want to take 2 trips of 1,000 apples 500 miles. You will be left with 1,000 apples and 167 miles to go (you have to leave an apple behind). Step three: Finally, you travel the last 167 miles with one load of 1,000 apples and are left with 833 apples in Bananaville.
78.31 %
67 votes
cleancleversimple

How do you divide 20 oranges equally to 11 girls? No one gets more and no one gets less. All 11 girls should receive equal portions. How?
Juice the oranges and serve the equal quantity of orange juice.
78.31 %
67 votes
logicmathcleanclever

On the first day they cover one quarter of the total distance. The next day they cover one quarter of what is left. The following day they cover two fifths of the remainder and on the fourth day half of the remaining distance. The group now have 14 miles left, how many miles have they walked?
68.962962 miles
78.13 %
55 votes
logicclean

There is a barrel with no lid and some wine in it. "This barrel of wine is more than half full," said Curly. Moe says, "No it's not. It's less than half full." Without any measuring implements and without removing any wine from the barrel, how can they easily determine who is correct?
Tilt the barrel until the wine barely touches the lip of the barrel. If the bottom of the barrel is visible then it is less than half full. If the barrel bottom is still completely covered by the wine, then it is more than half full.
78.13 %
55 votes
logicstorycleverclean

A poor miller living with his daughter comes onto hard times and is not able to pay his rent. His evil landlord threatens to evict them unless the daughter marries him. The daughter, not wanting to marry the landlord but fearing that her father won't be able to take being evicted, suggests the following proposition to the landlord. He will put two stones, one white and one black, into a bag in front of the rest of the townspeople. She will pick one stone out of the bag. If she picks the white stone, the landlord will forgive their debt and let them stay, but if she picks the black stone, she will marry the landlord, and her father will be evicted anyway. The landlord agrees to the proposal. Everybody meets in the center of the town. The landlord picks up two stones to put in the bag, but the daughter notices that he secretly picked two black stones. She is about to reveal his deception but realizes that this would embarrass him in front of the townspeople, and he would evict them. She quickly comes up with another plan. What can she do that will allow the landlord save face, while also ensuring that she and her father can stay and that she won't have to marry the landlord?
The daughter picks a stone out, keeps it in her closed hand, and proclaims "this is my stone." She then throws it to the ground, and says "look at the other stone in the bag, and if it's black, that means I picked the white stone." The landlord will reveal the other stone, which is obviously black, and the daughter will have succeeded. The landlord was never revealed as a cheater and thus was able to save face.
78.11 %
94 votes
logiccleanclevermath

At a dinner party, many of the guests exchange greetings by shaking hands with each other while they wait for the host to finish cooking. After all this handshaking, the host, who didn't take part in or see any of the handshaking, gets everybody's attention and says: "I know for a fact that at least two people at this party shook the same number of other people's hands." How could the host know this? Note that nobody shakes his or her own hand.
Assume there are N people at the party. Note that the least number of people that someone could shake hands with is 0, and the most someone could shake hands with is N-1 (which would mean that they shook hands with every other person). Now, if everyone at the party really were to have shaken hands with a different number of people, then that means somone must have shaken hands with 0 people, someone must have shaken hands with 1 person, and so on, all the way up to someone who must have shaken hands with N-1 people. This is the only possible scenario, since there are N people at the party and N different numbers of possible people to shake hands with (all the numbers between 0 and N-1 inclusive). But this situation isn't possible, because there can't be both a person who shook hands with 0 people (call him Person 0) and a person who shook hands with N-1 people (call him Person N-1). This is because Person 0 shook hands with nobody (and thus didn't shake hands with Person N-1), but Person N-1 shook hands with everybody (and thus did shake hands with Person 0). This is clearly a contradiction, and thus two of the people at the party must have shaken hands with the same number of people. Pretend there were only 2 guests at the party. Then try 3, and 4, and so on. This should help you think about the problem. Search: Pigeonhole principle
78.06 %
49 votes