Best difficult riddles

logicsimplecleverinterviewstory

Betty signals to the headwaiter in a restaurant, and says, "There is a fly in my tea." The waiter says "No problem Madam. I will bring you a fresh cup of tea." A few minutes later Betty shouts, "Get me the manager! This is the same cup of tea." How did she know? Hint: The tea is still hot.
Betty had already put sugar in her tea before sending it back. When the "new" cup came, it was already tasted sweet.
73.40 %
72 votes
logicclean

You have twelve balls, identical in every way except that one of them weighs slightly less or more than the balls. You have a balance scale, and are allowed to do 3 weighings to determine which ball has the different weight, and whether the ball weighs more or less than the other balls. What process would you use to weigh the balls in order to figure out which ball weighs a different amount, and whether it weighs more or less than the other balls?
Take eight balls, and put four on one side of the scale, and four on the other. If the scale is balanced, that means the odd ball out is in the other 4 balls. Let's call these 4 balls O1, O2, O3, and O4. Take O1, O2, and O3 and put them on one side of the scale, and take 3 balls from the 8 "normal" balls that you originally weighed, and put them on the other side of the scale. If the O1, O2, and O3 balls are heavier, that means the odd ball out is among these, and is heavier. Weigh O1 and O2 against each other. If one of them is heavier than the other, this is the odd ball out, and it is heavier. Otherwise, O3 is the odd ball out, and it is heavier. If the O1, O2, and O3 balls are lighter, that means the odd ball out is among these, and is lighter. Weigh O1 and O2 against each other. If one of them is lighter than the other, this is the odd ball out, and it is lighter. Otherwise, O3 is the odd ball out, and it is lighter. If these two sets of 3 balls weigh the same amount, then O4 is the odd ball out. Weight it against one of the "normal" balls from the first weighing. If O4 is heavier, then it is heavier, if it's lighter, then it's lighter. If the scale isn't balanced, then the odd ball out is among these 8 balls. Let's call the four balls on the side of the scale that was heavier H1, H2, H3, and H4 ("H" for "maybe heavier"). Let's call the four balls on the side of the scale that was lighter L1, L2, L3, and L4 ("L" for "maybe lighter"). Let's also call each ball from the 4 in the original weighing that we know aren't the odd balls out "Normal" balls. So now weigh [H1, H2, L1] against [H3, L2, Normal]. -If the [H1, H2, L1] side is heavier (and thus the [H3, L2, Normal] side is lighter), then this means that either H1 or H2 is the odd ball out and is heavier, or L2 is the odd ball out and is lighter. -So measure [H1, L2] against 2 of the "Normal" balls. -If [H1, L2] are heavier, then H1 is the odd ball out, and is heavier. -If [H1, L2] are lighter, then L2 is the odd ball out, and is lighter. -If the scale is balanced, then H2 is the odd ball out, and is heavier. -If the [H1, H2, L1] side is lighter (and thus the [H3, L2, Normal] side is heavier), then this means that either L1 is the odd ball out, and is lighter, or H3 is the odd ball out, and is heavier. -So measure L1 and H3 against two "normal" balls. -If the [L1, H3] side is lighter, then L1 is the odd ball out, and is lighter. -Otherwise, if the [L1, H3] side is heavier, then H3 is the odd ball out, and is heavier. If the [H1, H2, L1] side and the [H3, L2, Normal] side weigh the same, then we know that either H4 is the odd ball out, and is heavier, or one of L3 or L4 is the odd ball out, and is lighter. So weight [H4, L3] against two of the "Normal" balls. If the [H4, L3] side is heavier, then H4 is the odd ball out, and is heavier. If the [H4, L3] side is lighter, then L3 is the odd ball out, and is lighter. If the [H4, L3] side weighs the same as the [Normal, Normal] side, then L4 is the odd ball out, and is lighter.
72.91 %
88 votes
mathtricky

Take 9 from 6, 10 from 9, 50 from 40 and leave 6. How is it possible?
SIX - 9 (IX) = S 9 (IX) - 10 (X) = I 40 (XL) - 50 (L) = X
72.80 %
48 votes
cleanpoemssimplelogic

The front of me is the source of a song Or to kiss with a fervor of love lifelong. My back is a plant fit for a queen, Crafted by needle, chemical, or machine.
Necklace
72.70 %
83 votes
logicstorydetective

Emperor Akbar once ruled over India. He was a wise and intelligent ruler; and he had in his court the Nine Gems, his nine advisors, who were each known for a particular skill. One of these Gems was Birbal, known for his wit and wisdom. The story below is one of the examples of his wit. Do you have it in you to find the answer? One day the Emperor Akbar stumbled on a small rock in the royal gardens and momentarily went off balance. He was in a bad mood that day and the incident only served to make him more angry. Finding a target for his mood of the day, he ordered the gardener's arrest and execution. Birbal heard of this and visited the gardener in the cell where he was being held awaiting execution. Birbal had known the gardener for many years and also knew of the gardener's immense respect and sense of loyalty for the king. He decided to help the gardener escape the death sentence and explained his plan to the gardener, who reluctantly agreed to go along. The next day the gardener was asked what his last wish was before he was hanged, as was custom. The gardener requested an audience with the emperor. This wish was granted, but when the man neared the throne he tried to attack the emperor. The emperor was shocked and demanded an explanation. The gardener looked at Birbal, who stepped forward and explained why the gardener had attacked the emperor. The emperor immediately realised how unjust he had been and ordered the release of the gardener. How did Birbal manage this?
"Your Majesty," said Birbal, "there is probably no person more loyal to you than this unfortunate gardener. Fearing that people would say you hanged him for a silly reason and question your sense of justice, he went out of his way to give you a genuine reason for hanging him."
72.49 %
95 votes