A king has 100 identical servants, each with a different rank between 1 and 100. At the end of each day, each servant comes into the king's quarters, one-by-one, in a random order, and announces his rank to let the king know that he is done working for the day. For example, servant 14 comes in and says "Servant 14, reporting in."
One day, the king's aide comes in and tells the king that one of the servants is missing, though he isn't sure which one.
Before the other servants begin reporting in for the night, the king asks for a piece of paper to write on to help him figure out which servant is missing. Unfortunately, all that's available is a very small piece that can only hold one number at a time. The king is free to erase what he writes and write something new as many times as he likes, but he can only have one number written down at a time.
The king's memory is bad and he won't be able to remember all the exact numbers as the servants report in, so he must use the paper to help him.
How can he use the paper such that once the final servant has reported in, he'll know exactly which servant is missing?

When the first servant comes in, the king should write down his number. For each other servant that reports in, the king should add that servant's number to the current number written on the paper, and then write this new number on the paper.
Once the final servant has reported in, the number on the paper should equal
(1 + 2 + 3 + ... + 99 + 100) - MissingServantsNumber
Since (1 + 2 + 3 + ... + 99 + 100) = 5050, we can rephrase this to say that the number on the paper should equal
5050 - MissingServantsNumber
So to figure out the missing servant's number, the king simply needs to subtract the number written on his paper from 5050:
MissingServantsNumber = 5050 - NumberWrittenOnThePaper

A woman who lived in Germany during World War II wanted to cross the German/Swiss border in order to escape Nazi pursuers. The bridge which she is to cross is a half mile across, over a large canyon. Every three minutes a guard comes out of his bunker and checks if anyone is on the bridge. If a person is caught trying to escape German side to the Swiss side they are shot. If caught crossing the other direction without papers they are sent back. She knows that it takes at least five minutes to cross the bridge, in which time the guard will see her crossing and shoot her. How does she get across?

She waits until the guard goes inside his hunt, and begins to walk across the bridge. She gets a little more than half way, turns around, and begins to walk toward the german side once more. The guard comes out, sees that she has no papers, and sends her "back" to the swiss side.

Three ants are sitting at the three corners of an equilateral triangle. Each ant starts randomly picks a direction and starts to move along the edge of the triangle. What is the probability that none of the ants collide?

So let’s think this through. The ants can only avoid a collision if they all decide to move in the same direction (either clockwise or anti-clockwise). If the ants do not pick the same direction, there will definitely be a collision. Each ant has the option to either move clockwise or anti-clockwise. There is a one in two chance that an ant decides to pick a particular direction. Using simple probability calculations, we can determine the probability of no collision.
P(No collision) = P(All ants go in a clockwise direction) + P( All ants go in an anti-clockwise direction) = 0.5 * 0.5 * 0.5 + 0.5 * 0.5 * 0.5 = 0.25

Two sisters we are, one is dark and one is fair,
In twin towers dwelling we're quite the pair,
One from land and one from sea,
Tell us truly, who are we?

Swaff was traveling in an elevator, being cool, when he suddenly heard the cord supporting the elevator snap. Being the cool guy that he is, he knew of a myth where if you could jump at the right time, you could possibly be able to survive a plunge in an elevator.
Now, when Swaff was a boy, he spent all of his math classes making fun of his female teacher's moustache. He never paid attention, so he was a tad bit slow in his mathematical calculations. He did, however, have a very bizarre talent, in which he could tell the exact speed he was traveling. That came in pretty lucky today.
Swaff knew he was falling at an even rate of 50 miles per hour. When the cord snapped, he was exactly 110 feet above the ground. He knew that he must jump at the right time to have any hopes of surviving.
Now, after doing the math, please tell me when Swaff jumped.

He never did. By the time Swaff figured out that he would have to jump in 1.5 seconds, he would already be dead. Not even the best of mathematicians could do all the math needed in 1 and half seconds. Swaff fell to his death.