You are visiting NYC when a man approaches you.
"Not counting bald people, I bet a hundred bucks that there are two people living in New York City with the same number of hairs on their heads," he tells you.
"I'll take that bet!" you say. You talk to the man for a minute, after which you realize you have lost the bet.
What did the man say to prove his case?
This is a classic example of the pigeonhole principle. The argument goes as follows: assume that every non-bald person in New York City has a different number of hairs on their head. Since there are about 9 million people living in NYC, let's say 8 million of them aren't bald.
So 8 million people need to have different numbers of hairs on their head. But on average, people only have about 100,000 hairs. So even if there was someone with 1 hair, someone with 2 hairs, someone with 3 hairs, and so on, all the way up to someone with 100,000 hairs, there are still 7,900,000 other people who all need different numbers of hairs on their heads, and furthermore, who all need MORE than 100,000 hairs on their head.
You can see that additionally, at least one person would need to have at least 8,000,000 hairs on their head, because there's no way to have 8,000,000 people all have different numbers of hairs between 1 and 7,999,999. But someone having 8,000,000 is an essential impossibility (as is even having 1,000,000 hairs), So there's no way this situation could be the case, where everyone has a different number of hairs. Which means that at least two people have the same number of hairs.
I sometimes come in a can but I'm not food.
I sometimes come in a bottle but I'm not a beverage.
I come in different colors but I'm not a rainbow.
I'm sometimes used with canvas but I'm not a tent.
I'm used with a brush but I'm not toothpaste.
What Am I?
You're walking down a path and come to two doors. One of the doors leads to a life of prosperity and happiness, and the other door leads to a life of misery and sorrow. You don't know which door is which.
In front of the door is ONE man. You know that this man either always lies, or always tells the truth, but you don't know which. The man knows which door is which.
You are allowed to ask the man ONE yes-or-no question to figure out which door to go through. To make things more difficult, the man is very self-centered, so you are only allowed to ask him a question about what he thinks or knows; your question cannot involve what any other person or object (real or hypothetical) might say.
What question should you ask to ensure you go through the good door?
You should ask: "If I asked you if the good door is on the left, would you say yes?"
Notice that this is subtly different than asking "Is the good door on the left?", in that you are asking him IF he would say yes to that question, not what his answer to the question would be. Thus you are asking a question about a question, and if it ends up being the liar you are talking to, this will cause him to lie about a lie and thus tell the truth. The four possible cases are:
The man is a truth-teller and the good door is on the left. He will say "yes".
The man is a truth-teller and the good door is on the right. He will say "no".
The man is a liar and the good door is on the left. He will say "yes" because if you asked him "Is the good door on the left?", he would lie and say "no", and so when you ask him if he would say "yes", he will lie and say "yes".
The man is a liar and the good door is on the right. Similar to the previous example, he'll say "no".
So regardless of whether the man is a truth-teller or a liar, this question will get a "yes" if the door on the left is the good door, and a "no" if it's not.