## Subtract 5 from 25

How many times can you subtract 5 from 25?

Just once, because after you subtract anything from it, it's not 25 anymore.

How many times can you subtract 5 from 25?

Just once, because after you subtract anything from it, it's not 25 anymore.

Every day, Jack arrives at the train station from work at 5 pm. His wife leaves home in her car to meet him there at exactly 5 pm, and drives him home. One day, Jack gets to the station an hour early, and starts walking home, until his wife meets him on the road. They get home 30 minutes earlier than usual. How long was he walking? Distances are unspecified. Speeds are unspecified, but constant. Give a number which represents the answer in minutes.

The best way to think about this problem is to consider it from the perspective of the wife. Her round trip was decreased by 30 minutes, which means each leg of her trip was decreased by 15 minutes. Jack must have been walking for 45 minutes.

If
1 = 5 ,
2 = 25 ,
3 = 325 ,
4 = 4325
Then 5 = ?

1
Already stated 1=5 => 5=1

The digits 0-9(0,1,2,3,4,5,6,7,8,9) can be rearranged into 3628800 distinct 10 digits numbers.
How many of these numbers are prime?

None. The sum of numbers from 0-9(0,1,2,3,4,5,6,7,8,9) is 45 and therefore can be divisible by 3 and 9.

You have 25 horses. When they race, each horse runs at a different, constant pace. A horse will always run at the same pace no matter how many times it races.
You want to figure out which are your 3 fastest horses. You are allowed to race at most 5 horses against each other at a time. You don't have a stopwatch so all you can learn from each race is which order the horses finish in.
What is the least number of races you can conduct to figure out which 3 horses are fastest?

You need to conduct 7 races.
First, separate the horses into 5 groups of 5 horses each, and race the horses in each of these groups. Let's call these groups A, B, C, D and E, and within each group let's label them in the order they finished. So for example, in group A, A1 finished 1st, A2 finished 2nd, A3 finished 3rd, and so on.
We can rule out the bottom two finishers in each race (A4 and A5, B4 and B5, C4 and C5, D4 and D5, and E4 and E5), since we know of at least 3 horses that are faster than them (specifically, the horses that beat them in their respective races).
This table shows our remaining horses:
A1 B1 C1 D1 E1
A2 B2 C2 D2 E2
A3 B3 C3 D3 E3
For our 6th race, let's race the top finishers in each group: A1, B1, C1, D1 and E1. Let's assume that the order of finishers is: A1, B1, C1, D1, E1 (so A1 finished first, E1 finished last).
We now know that horse D1 cannot be in the top 3, because it is slower than C1, B1 and A1 (it lost to them in the 6th race). Thus, D2 and D3 can also not be in the to 3 (since they are slower than D1).
Similarly, E1, E2 and E3 cannot be in the top 3 because they are all slower than D1 (which we already know isn't in the top 3).
Let's look at our updated table, having removed these horses that can't be in the top 3:
A1 B1 C1
A2 B2 C2
A3 B3 C3
We can actually rule out a few more horses. C2 and C3 cannot be in the top 3 because they are both slower than C1 (and thus are also slower than B1 and A1). And B3 also can't be in the top 3 because it is slower than B2 and B1 (and thus is also slower than A1). So let's further update our table:
A1 B1 C1
A2 B2
A3
We actually already know that A1 is our fastest horse (since it directly or indirectly beat all the remaining horses). So now we just need to find the other two fastest horses out of A2, A3, B1, B2 and C1. So for our 7th race, we simply race these 5 horses, and the top two finishers, plus A1, are our 3 fastest horses.

You just bought a cute rabbit at a pet store. The rabbit can breed once every month, and deliver 7 babies at a time. How many rabbits do you have after 12 months?

One, it takes two rabbits to breed.

I know a number which is spelled in an alphabetical order. Do you?

Forty.

How do you make the number 7 an even number without addition, subtraction, multiplication, or division?

Drop the "S".

I am an odd number; take away a letter and I become even. What number am I?

7.

Note: This riddle must be done IN YOUR HEAD ONLY and NOT using paper and a pen.
Take 1000 and add 40 to it.
Now add another 1000.
Now add 30.
Another 1000.
Now add 20.
Now add another 1000.
Now add 10.
What is the total?

The answer is 4100, check it out on a calculator. Did you think it was 5000? Most people add the 100 as 1000 by mistake.