## Lucky number

Think of a number. Double it. Add ten. Half it. Take away the number you started with. What is your number?

Your number is 5.

Think of a number. Double it. Add ten. Half it. Take away the number you started with. What is your number?

Your number is 5.

The digits 0-9(0,1,2,3,4,5,6,7,8,9) can be rearranged into 3628800 distinct 10 digits numbers.
How many of these numbers are prime?

None. The sum of numbers from 0-9(0,1,2,3,4,5,6,7,8,9) is 45 and therefore can be divisible by 3 and 9.

A bad king has a cellar of 1000 bottles of delightful and very expensive wine. A neighboring queen plots to kill the bad king and sends a servant to poison the wine.
Fortunately (or say unfortunately) the bad king's guards catch the servant after he has only poisoned one bottle.
Alas, the guards don't know which bottle but know that the poison is so strong that even if diluted 100,000 times it would still kill the king. Furthermore, it takes one month to have an effect.
The bad king decides he will get some of the prisoners in his vast dungeons to drink the wine. Being a clever bad king he knows he needs to murder no more than 10 prisoners – believing he can fob off such a low death rate – and will still be able to drink the rest of the wine (999 bottles) at his anniversary party in 5 weeks time.
Explain what is in mind of the king, how will he be able to do so?

Think in terms of binary numbers. (now don’t read the solution, give a try).
Number the bottles 1 to 1000 and write the number in binary format.
bottle 1 = 0000000001 (10 digit binary)
bottle 2 = 0000000010
bottle 500 = 0111110100
bottle 1000 = 1111101000
Now take 10 prisoners and number them 1 to 10, now let prisoner 1 take a sip from every bottle that has a 1 in its least significant bit. Let prisoner 10 take a sip from every bottle with a 1 in its most significant bit. etc.
prisoner = 10 9 8 7 6 5 4 3 2 1
bottle 924 = 1 1 1 0 0 1 1 1 0 0
For instance, bottle no. 924 would be sipped by 10,9,8,5,4 and 3. That way if bottle no. 924 was the poisoned one, only those prisoners would die.
After four weeks, line the prisoners up in their bit order and read each living prisoner as a 0 bit and each dead prisoner as a 1 bit. The number that you get is the bottle of wine that was poisoned.
1000 is less than 1024 (2^10). If there were 1024 or more bottles of wine it would take more than 10 prisoners.

You have 25 horses. When they race, each horse runs at a different, constant pace. A horse will always run at the same pace no matter how many times it races.
You want to figure out which are your 3 fastest horses. You are allowed to race at most 5 horses against each other at a time. You don't have a stopwatch so all you can learn from each race is which order the horses finish in.
What is the least number of races you can conduct to figure out which 3 horses are fastest?

You need to conduct 7 races.
First, separate the horses into 5 groups of 5 horses each, and race the horses in each of these groups. Let's call these groups A, B, C, D and E, and within each group let's label them in the order they finished. So for example, in group A, A1 finished 1st, A2 finished 2nd, A3 finished 3rd, and so on.
We can rule out the bottom two finishers in each race (A4 and A5, B4 and B5, C4 and C5, D4 and D5, and E4 and E5), since we know of at least 3 horses that are faster than them (specifically, the horses that beat them in their respective races).
This table shows our remaining horses:
A1 B1 C1 D1 E1
A2 B2 C2 D2 E2
A3 B3 C3 D3 E3
For our 6th race, let's race the top finishers in each group: A1, B1, C1, D1 and E1. Let's assume that the order of finishers is: A1, B1, C1, D1, E1 (so A1 finished first, E1 finished last).
We now know that horse D1 cannot be in the top 3, because it is slower than C1, B1 and A1 (it lost to them in the 6th race). Thus, D2 and D3 can also not be in the to 3 (since they are slower than D1).
Similarly, E1, E2 and E3 cannot be in the top 3 because they are all slower than D1 (which we already know isn't in the top 3).
Let's look at our updated table, having removed these horses that can't be in the top 3:
A1 B1 C1
A2 B2 C2
A3 B3 C3
We can actually rule out a few more horses. C2 and C3 cannot be in the top 3 because they are both slower than C1 (and thus are also slower than B1 and A1). And B3 also can't be in the top 3 because it is slower than B2 and B1 (and thus is also slower than A1). So let's further update our table:
A1 B1 C1
A2 B2
A3
We actually already know that A1 is our fastest horse (since it directly or indirectly beat all the remaining horses). So now we just need to find the other two fastest horses out of A2, A3, B1, B2 and C1. So for our 7th race, we simply race these 5 horses, and the top two finishers, plus A1, are our 3 fastest horses.

If
1 = 5 ,
2 = 25 ,
3 = 325 ,
4 = 4325
Then 5 = ?

1
Already stated 1=5 => 5=1

How could you give someone $63 using six bills without using one dollar bills?

1 - $50 bill, 1 - $5 bill, 4 - $2 bills.

A train leaves from Halifax, Nova Scotia heading towards Vancouver, British Columbia at 120 km/h. Three hours later, a train leaves Vancouver heading towards Halifax at 180 km/h. Assume there's exactly 6000 kilometers between Vancouver and Halifax. When they meet, which train is closer to Halifax?

Both trains would be at the same spot when they meet therefore they are both equally close to Halifax.

There is a word and six letters it contains.
Take one away and twelve is what remains.
What word is it?

Dozens.

How can you take 2 from 5 and leave 4?

F I V E. Remove the 2 letters F and E from five and you have IV.

Is half of two plus two equal to two or three?

Three. It seems that it could almost be either, but if you follow the mathematical orders of operation, division is performed before addition. So... half of two is one. Then add two, and the answer is three.