Riddle #570

Similar riddles

See also best riddles or new riddles.

logicmath

There are 1 million closed school lockers in a row, labeled 1 through 1,000,000. You first go through and flip every locker open. Then you go through and flip every other locker (locker 2, 4, 6, etc...). When you're done, all the even-numbered lockers are closed. You then go through and flip every third locker (3, 6, 9, etc...). "Flipping" mean you open it if it's closed, and close it if it's open. For example, as you go through this time, you close locker 3 (because it was still open after the previous run through), but you open locker 6, since you had closed it in the previous run through. Then you go through and flip every fourth locker (4, 8, 12, etc...), then every fifth locker (5, 10, 15, etc...), then every sixth locker (6, 12, 18, etc...) and so on. At the end, you're going through and flipping every 999,998th locker (which is just locker 999,998), then every 999,999th locker (which is just locker 999,999), and finally, every 1,000,000th locker (which is just locker 1,000,000). At the end of this, is locker 1,000,000 open or closed?
Locker 1,000,000 will be open. If you think about it, the number of times that each locker is flipped is equal to the number of factors it has. For example, locker 12 has factors 1, 2, 3, 4, 6, and 12, and will thus be flipped 6 times (it will end be flipped when you flip every one, every 2nd, every 3rd, every 4th, every 6th, and every 12th locker). It will end up closed, since flipping an even number of times will return it to its starting position. You can see that if a locker number has an even number of factors, it will end up closed. If it has an odd number of factors, it will end up open. As it turns out, the only types of numbers that have an odd number of factors are squares. This is because factors come in pairs, and for squares, one of those pairs is the square root, which is duplicated and thus doesn't count twice as a factor. For example, 12's factors are 1 x 12, 2 x 6, and 3 x 4 (6 total factors). On the other hand, 16's factors are 1 x 16, 2 x 8, and 4 x 4 (5 total factors). So lockers 1, 4, 9, 16, 25, etc... will all be open. Since 1,000,000 is a square number (1000 x 1000), it will be open as well.
80.86 %
70 votes
logicmath

What is the smallest number, that can be expressed as the sum of the cubes of two different sets of numbers?
Hardy-Ramanujan discovered 1729 as a magic number. Why 1729 is a magic number? 10^3 + 9^3 = 1729 and 12^3 + 1^3 = 1729 Taxicab number Ta(2)
80.45 %
62 votes
logicmathsimple

Two trains are traveling toward each other on the same track, each at 60 miles per hour. When they are exactly 120 miles apart, a fly takes off from the front of one of the trains, flying toward the other train at a constant rate of 100 miles per hour. When the fly reaches the other train, it instantly changes directions and starts flying toward the other train, still at 100 miles per hour. It keeps doing this back and forth until the trains finally collide. If you add up all the distances back and forth that the fly has travelled, how much total distance has the fly travelled when the trains finally collide?
The fly has travelled exactly 100 miles. We can figure this out using some simple math. Becuase the trains are 120 miles apart when the fly takes off, and are travelling at 60 mph each, they will collide in exactly 1 hour. This gives the fly exactly 1 hour of flying time, going at a speed of 100 miles per hour. Thus, the fly will travel 100 miles in this hour.
80.45 %
62 votes
logicmath

A women walks into a bank to cash out her check. By mistake the bank teller gives her dollar amount in change, and her cent amount in dollars. On the way home she spends 5 cents, and then suddenly she notices that she has twice the amount of her check. How much was her check amount?
The check was for dollars 31.63. The bank teller gave her dollars 63.31 She spent .05, and then she had dollars 63.26, which is twice the check. Let x be the dolars of the check, and y be the cent. The check was for 100x + y cent He was given 100y + x cent Also 100y + x - 5 = 2(100x + y) Expanding this out and rearranging, we find: 98y = 199x + 5 Which doesn't look like enough information to solve the problem except that x and y must be whole numbers, so: 199x ≡ -5 (mod 98) 98*2*x + 3x ≡ -5 (mod 98) 3x ≡ -5 ≡ 93 (mod 98) This quickly leads to x = 31 and then y = 63 Alternative solution by substitution: 98y = 199x + 5 y = (199x + 5)/98 = 2x + (3x + 5)/98 Since x and y are whole numbers, so must be (3x + 5)/98. Call it z = (3x+5)/98 so 98z = 3x + 5, or 3x = 98z - 5 or x = (98z - 5)/3 or x = 32z-1 + (2z-2)/3. Since everything is a whole number, so must be (2z-2)/3. Call it w = (2z-2)/3, so 3w = 2z-2 so z = (3w+2)/2 or z = w + 1 + w/2. So w/2 must be whole, or w must be even. So try w = 2. Then z = 4. Then x = 129. Then y = 262. if you decrease y by 199 and x by 98, the answer is the same: y = 63 and x = 31.
79.95 %
54 votes
cleanlogicmathsimple

Create a number using only the digits 4,4,3,3,2,2,1 and 1. So I can only be eight digits. You have to make sure the ones are separated by one digit, the twos are separated by two digits the threes are separated with three digits and the fours are separated by four digits.
41312432.
79.93 %
85 votes
logicmath

You have 25 horses. When they race, each horse runs at a different, constant pace. A horse will always run at the same pace no matter how many times it races. You want to figure out which are your 3 fastest horses. You are allowed to race at most 5 horses against each other at a time. You don't have a stopwatch so all you can learn from each race is which order the horses finish in. What is the least number of races you can conduct to figure out which 3 horses are fastest?
You need to conduct 7 races. First, separate the horses into 5 groups of 5 horses each, and race the horses in each of these groups. Let's call these groups A, B, C, D and E, and within each group let's label them in the order they finished. So for example, in group A, A1 finished 1st, A2 finished 2nd, A3 finished 3rd, and so on. We can rule out the bottom two finishers in each race (A4 and A5, B4 and B5, C4 and C5, D4 and D5, and E4 and E5), since we know of at least 3 horses that are faster than them (specifically, the horses that beat them in their respective races). This table shows our remaining horses: A1 B1 C1 D1 E1 A2 B2 C2 D2 E2 A3 B3 C3 D3 E3 For our 6th race, let's race the top finishers in each group: A1, B1, C1, D1 and E1. Let's assume that the order of finishers is: A1, B1, C1, D1, E1 (so A1 finished first, E1 finished last). We now know that horse D1 cannot be in the top 3, because it is slower than C1, B1 and A1 (it lost to them in the 6th race). Thus, D2 and D3 can also not be in the to 3 (since they are slower than D1). Similarly, E1, E2 and E3 cannot be in the top 3 because they are all slower than D1 (which we already know isn't in the top 3). Let's look at our updated table, having removed these horses that can't be in the top 3: A1 B1 C1 A2 B2 C2 A3 B3 C3 We can actually rule out a few more horses. C2 and C3 cannot be in the top 3 because they are both slower than C1 (and thus are also slower than B1 and A1). And B3 also can't be in the top 3 because it is slower than B2 and B1 (and thus is also slower than A1). So let's further update our table: A1 B1 C1 A2 B2 A3 We actually already know that A1 is our fastest horse (since it directly or indirectly beat all the remaining horses). So now we just need to find the other two fastest horses out of A2, A3, B1, B2 and C1. So for our 7th race, we simply race these 5 horses, and the top two finishers, plus A1, are our 3 fastest horses.
79.84 %
60 votes
logicmath

Think of a number. Double it. Add ten. Half it. Take away the number you started with. What is your number?
Your number is 5.
79.75 %
47 votes
trickycleancrazylogic

A black dog stands in the middle of an intersection in a town painted black. None of the street lights are working due to a power failure caused by a storm. A car with two broken headlights drives towards the dog but turns in time to avoid hitting him. How could the driver have seen the dog in time?
It was daylight.
79.72 %
90 votes