## Six bills

How could you give someone $63 using six bills without using one dollar bills?

1 - $50 bill, 1 - $5 bill, 4 - $2 bills.

the answer

How could you give someone $63 using six bills without using one dollar bills?

1 - $50 bill, 1 - $5 bill, 4 - $2 bills.

the answer

You are standing in a pitch-dark room. A friend walks up and hands you a normal deck of 52 cards. He tells you that 13 of the 52 cards are face-up, the rest are face-down. These face-up cards are distributed randomly throughout the deck.
Your task is to split up the deck into two piles, using all the cards, such that each pile has the same number of face-up cards. The room is pitch-dark, so you can't see the deck as you do this.
How can you accomplish this seemingly impossible task?

Take the first 13 cards off the top of the deck and flip them over. This is the first pile. The second pile is just the remaining 39 cards as they started.
This works because if there are N face-up cards in within the first 13 cards, then there will be (13 - N) face up cards in the remaining 39 cards. When you flip those first 13 cards, N of which are face-up, there will now be N cards face-down, and therefore (13 - N) cards face-up, which, as stated, is the same number of face-up cards in the second pile.

the answer

Two trains are traveling toward each other on the same track, each at 60 miles per hour. When they are exactly 120 miles apart, a fly takes off from the front of one of the trains, flying toward the other train at a constant rate of 100 miles per hour. When the fly reaches the other train, it instantly changes directions and starts flying toward the other train, still at 100 miles per hour. It keeps doing this back and forth until the trains finally collide.
If you add up all the distances back and forth that the fly has travelled, how much total distance has the fly travelled when the trains finally collide?

The fly has travelled exactly 100 miles. We can figure this out using some simple math. Becuase the trains are 120 miles apart when the fly takes off, and are travelling at 60 mph each, they will collide in exactly 1 hour. This gives the fly exactly 1 hour of flying time, going at a speed of 100 miles per hour. Thus, the fly will travel 100 miles in this hour.

the answer

How can you divide a pizza into 8 equal slices using only 3 straight cuts?

Cut 1: Cut the pizza straight down the middle into two halves.
Cut 2: Keeping the two halves in the place, cut the pizza straight down the middle at right angles to the first cut (you will be left with 4 equal quarters)
Cut 3: Pile the 4 quarters on top of each other and cut through the middle of the pile. You will be left with 8 equal slices.

the answer

Three people check into a hotel room. The bill is $30 so they each pay $10. After they go to the room, the hotel's cashier realizes that the bill should have only been $25. So he gives $5 to the bellhop and tells him to return the money to the guests. The bellhop notices that $5 can't be split evenly between the three guests, so he keeps $2 for himself and then gives the other $3 to the guests.
Now the guests, with their dollars back, have each paid $9 for a total of $27. And the bellhop has pocketed $2. So there is $27 + $2 = $29 accounted for. But the guests originally paid $30. What happened to the other dollar?

This riddle is just an example of misdirection. It is actually nonsensical to add $27 + $2, because the $27 that has been paid includes the $2 the bellhop made.
The correct math is to say that the guests paid $27, and the bellhop took $2, which, if given back to the guests, would bring them to their correct payment of $27 - $2 = $25.

the answer

There are 100 ants on a board that is 1 meter long, each facing either left or right and walking at a pace of 1 meter per minute.
The board is so narrow that the ants cannot pass each other; when two ants walk into each other, they each instantly turn around and continue walking in the opposite direction. When an ant reaches the end of the board, it falls off the edge.
From the moment the ants start walking, what is the longest amount of time that could pass before all the ants have fallen off the plank? You can assume that each ant has infinitely small length.

The longest amount of time that could pass would be 1 minute.
If you were looking at the board from the side and could only see the silhouettes of the board and the ants, then when two ants walked into each other and turned around, it would look to you as if the ants had walked right by each other.
In fact, the effect of two ants walking into each other and then turning around is essentially the same as two ants walking past one another: we just have two ants at that point walking in opposite directions.
So we can treat the board as if the ants are walking past each other. In this case, the longest any ant can be on the board is 1 minute (since the board is 1 meter long and the ants walk at 1 meter per minute). Thus, after 1 minute, all the ants will be off the board.

the answer

You are visiting NYC when a man approaches you.
"Not counting bald people, I bet a hundred bucks that there are two people living in New York City with the same number of hairs on their heads," he tells you.
"I'll take that bet!" you say. You talk to the man for a minute, after which you realize you have lost the bet.
What did the man say to prove his case?

This is a classic example of the pigeonhole principle. The argument goes as follows: assume that every non-bald person in New York City has a different number of hairs on their head. Since there are about 9 million people living in NYC, let's say 8 million of them aren't bald.
So 8 million people need to have different numbers of hairs on their head. But on average, people only have about 100,000 hairs. So even if there was someone with 1 hair, someone with 2 hairs, someone with 3 hairs, and so on, all the way up to someone with 100,000 hairs, there are still 7,900,000 other people who all need different numbers of hairs on their heads, and furthermore, who all need MORE than 100,000 hairs on their head.
You can see that additionally, at least one person would need to have at least 8,000,000 hairs on their head, because there's no way to have 8,000,000 people all have different numbers of hairs between 1 and 7,999,999. But someone having 8,000,000 is an essential impossibility (as is even having 1,000,000 hairs), So there's no way this situation could be the case, where everyone has a different number of hairs. Which means that at least two people have the same number of hairs.

the answer

Note: This riddle must be done IN YOUR HEAD ONLY and NOT using paper and a pen.
Take 1000 and add 40 to it.
Now add another 1000.
Now add 30.
Another 1000.
Now add 20.
Now add another 1000.
Now add 10.
What is the total?

The answer is 4100, check it out on a calculator. Did you think it was 5000? Most people add the 100 as 1000 by mistake.

the answer

A man who lives in Middletown has two girlfriends, one in Northtown and one in Southtown. Trains from the Middletown train station leave for Northtown once every hour. Separate trains from the station also leave for Southtown once every hour. No trains go to both Northtown and Southtown.
Each day he gets to the Middletown train station at a completely random time and gets onto the first train that is going to either Northtown or Southtown, whichever comes first.
After a few months, he realizes that he spends 80% of his days with his girlfriend from Northtown, and only 20% of his days with his girlfriend from Southtown.
How could this be?

The train to Northtown leaves every hour, on the hour (9:00AM, 10:00AM, etc...).
The train to Southtown leaves at 12 after the hour (9:12AM, 10:12AM, etc...).
So there is only a 12/60 (1/5) chance that he will end up on the train to Southtown each day, since he will usually get to the station during the 48 minutes of each hour when the train to Northtown will be the next to come.

the answer

A clock chimes 5 times in 4 seconds. How many times will it chime in 10 seconds?

11 times. It chimes at zero and then once every second for 10 seconds.

the answer

© 2018 SOLVE or DIE

Design by Talmer.cz