## Take 2 from 5

How can you take 2 from 5 and leave 4?

F I V E. Remove the 2 letters F and E from five and you have IV.

How can you take 2 from 5 and leave 4?

F I V E. Remove the 2 letters F and E from five and you have IV.

See also best riddles or new riddles.

How could the cowboy travel on friday, then sleep two days and then travel back home on friday.

If the horse was named Friday.

You have been given the task of transporting 3,000 apples 1,000 miles from Appleland to Bananaville. Your truck can carry 1,000 apples at a time. Every time you travel a mile towards Bananaville you must pay a tax of 1 apple but you pay nothing when going in the other direction (towards Appleland). What is highest number of apples you can get to Bananaville?

833 apples.
Step one: First you want to make 3 trips of 1,000 apples 333 miles. You will be left with 2,001 apples and 667 miles to go.
Step two: Next you want to take 2 trips of 1,000 apples 500 miles. You will be left with 1,000 apples and 167 miles to go (you have to leave an apple behind).
Step three: Finally, you travel the last 167 miles with one load of 1,000 apples and are left with 833 apples in Bananaville.

You are standing in a pitch-dark room. A friend walks up and hands you a normal deck of 52 cards. He tells you that 13 of the 52 cards are face-up, the rest are face-down. These face-up cards are distributed randomly throughout the deck.
Your task is to split up the deck into two piles, using all the cards, such that each pile has the same number of face-up cards. The room is pitch-dark, so you can't see the deck as you do this.
How can you accomplish this seemingly impossible task?

Take the first 13 cards off the top of the deck and flip them over. This is the first pile. The second pile is just the remaining 39 cards as they started.
This works because if there are N face-up cards in within the first 13 cards, then there will be (13 - N) face up cards in the remaining 39 cards. When you flip those first 13 cards, N of which are face-up, there will now be N cards face-down, and therefore (13 - N) cards face-up, which, as stated, is the same number of face-up cards in the second pile.

A horse is tied to a fifteen-foot rope and there is a bale of hay 25 feet away from him. The horse however is still able to eat from the hay. How is this possible?

The rope wasn't tied to anything.

100 men are in a room, each wearing either a white or black hat. Nobody knows the color of his own hat, although everyone can see everyone else's hat. The men are not allowed to communicate with each other at all (and thus nobody will ever be able to figure out the color of his own hat).
The men need to line up against the wall such that all the men with black hats are next to each other, and all the men with white hats are next to each other. How can they do this without communicating? You can assume they came up with a shared strategy before coming into the room.

The men go to stand agains the wall one at a time. If a man goes to stand against the wall and all of the men already against the wall have the same color hat, then he just goes and stands at either end of the line. However, if a man goes to stand against the wall and there are men with both black and white hats already against the wall, he goes and stands between the two men with different colored hats. This will maintain the state that the line contains men with one colored hats on one side, and men with the other colored hats on the other side, and when the last man goes and stands against the wall, we'll still have the desired outcome.

A witch owns a field containing many gold mines. She hires one man at a time to mine this gold for her. She promises 10% of what a man mines in a day, and he gives her the rest. Because she is blind, she has three magic bags who can talk. They report how much gold they held each day, and this is how she finds out if men are cheating her. Upon getting the job, each man agrees that if he isn't honest, then he will be turned into stone. So around the witch's mines, many statues lay!
Now comes an honest man named Garry. He accepts the job gladly. The witch, who didn't trust him said, "If I wrongly accuse you of cheating me, then I'll be turned into stone."
That night, Garry, having honestly done his first day's job, overheard the bags talking to the witch. He then formulated a plan... The next night, he submitted his gold, and kept 1.6 pounds of gold. Later, the witch talked with her bags. The first bag said it held 16 pounds that day. The second one said it held 5 pounds. The third one said it held 2 pounds. Beaming, the witch confronted Garry. "You scoundrel, you think you could fool me. Now you shall turn into stone!" the witch cried. One second later, the witch was hard as a rock, and very grey-looking. How did Garry brilliantly deceive the witch?

Garry put 2 lbs. in bag #1. 3 lbs. were put in bag #2. 11 lb. were put into bag #3. He then put bag #2 into bag #3, and bag #1 into bag #2. The bags only felt the weight of the gold above it. Thus they inadvertently gave the message that 23 lbs. were taken.

Every day, Jack arrives at the train station from work at 5 pm. His wife leaves home in her car to meet him there at exactly 5 pm, and drives him home. One day, Jack gets to the station an hour early, and starts walking home, until his wife meets him on the road. They get home 30 minutes earlier than usual. How long was he walking? Distances are unspecified. Speeds are unspecified, but constant. Give a number which represents the answer in minutes.

The best way to think about this problem is to consider it from the perspective of the wife. Her round trip was decreased by 30 minutes, which means each leg of her trip was decreased by 15 minutes. Jack must have been walking for 45 minutes.

You are standing next to three switches. You know these switches belong to three bulbs in a room behind a closed door – the door is tight closed, and heavy which means that it's absolutely impossible to see if any bulb is on or not. All three switches are now in position off.
You can do whatever you want with the switches and when you are finished you open the door and go into the room. While in there you have to tell which switch belongs to which bulb.
How will you do that?

Turn on the first switch and wait for a while. Turn off the first one and turn on the second. Go into the room. One bulb is shining, the second bulb is hot and the third one nothing.

I move very slowly at an imperceptible rate, although I take my time, I am never late. I accompany life, and survive past demise, I am viewed with esteem in many women's eyes. What am I?

I am your hair.

You can easily touch me, but not see me. You can throw me out, but not away. What am I?

Your back.