Math riddles

logicmathstorylove

A man who lives in Middletown has two girlfriends, one in Northtown and one in Southtown. Trains from the Middletown train station leave for Northtown once every hour. Separate trains from the station also leave for Southtown once every hour. No trains go to both Northtown and Southtown. Each day he gets to the Middletown train station at a completely random time and gets onto the first train that is going to either Northtown or Southtown, whichever comes first. After a few months, he realizes that he spends 80% of his days with his girlfriend from Northtown, and only 20% of his days with his girlfriend from Southtown. How could this be?
The train to Northtown leaves every hour, on the hour (9:00AM, 10:00AM, etc...). The train to Southtown leaves at 12 after the hour (9:12AM, 10:12AM, etc...). So there is only a 12/60 (1/5) chance that he will end up on the train to Southtown each day, since he will usually get to the station during the 48 minutes of each hour when the train to Northtown will be the next to come.
72.54 %
52 votes
mathtricky

As I was going to the mall I met a man with seven wives. Each wive held two bags, each bag held a mother cat, each mother cat had six babies, How many people were going to the mall?
Just one.
72.18 %
60 votes
logicmathsimpleclean

There are several chickens and rabbits in a cage (with no other types of animals). There are 72 heads and 200 feet inside the cage. How many chickens are there, and how many rabbits?
There are 44 chickens and 28 rabbits in the cage. Let c be the number of chickens, and r be the number of rabbits. r + c = 72 4r + 2c = 200 To solve the equations, we multiply the first by two, then subtract the second. 2r + 2c = 144 2r = 56 r = 28 c = 44
72.01 %
85 votes
cleanlogicmath

Mick and John were in a 100 meter race. When Mick crossed the finish line, John was only at the 90 meter mark. Mick suggested they run another race. This time, Mick would start ten meters behind the starting line. All other things being equal, will John win, lose, or will it be a tie in the second race?
John will lose again. In the second race, Mick started ten meters back. By the time John reaches the 90 meter mark, Mick will have caught up him. Therefore, the final ten meters will belong to the faster of the two. Since Mick is faster than John, he will win the final 10 meters and of course the race.
71.95 %
68 votes
logicmath

Two words are anagrams if and only if they contain the exact same letters with the exact same frequency (for example, "name" and "mean" are anagrams, but "red" and "deer" are not). Given two strings S1 and S2, which each only contain the lowercase letters a through z, write a program to determine if S1 and S2 are anagrams. The program must have a running time of O(n + m), where n and m are the lengths of S1 and S2, respectively, and it must have O(1) (constant) space usage.
First create an array A of length 26, representing the counts of each letter of the alphabet, with each value initialized to 0. Iterate through each character in S1 and add 1 to the corresponding entry in A. Once this iteration is complete, A will contain the counts for the letters in S1. Then, iterate through each character in S2, and subtract 1 from each corresponding entry in A. Now, if the each entry in A is 0, then S1 and S2 are anagrams; otherwise, S1 and S2 aren't anagrams. Here is pseudocode for the procedure that was described: def areAnagrams(S1, S2) A = new Array(26) A.initializeValues(0) for each character in S1 arrayIndex = mapCharacterToNumber(character) //maps "a" to 0, "b" to 1, "c" to 2, etc... A[arrayIndex] += 1 end for each character in S2 arrayIndex = mapCharacterToNumber(character) A[arrayIndex] -= 1 end for (i = 0; i < 26; i++) if A[i] != 0 return false end end return true end
71.88 %
55 votes
logicmathcleanclever

You are on a gameshow and the host shows you three doors. Behind one door is a suitcase with $1 million in it, and behind the other two doors are sacks of coal. The host tells you to choose a door, and that the prize behind that door will be yours to keep. You point to one of the three doors. The host says, "Before we open the door you pointed to, I am going to open one of the other doors." He points to one of the other doors, and it swings open, revealing a sack of coal behind it. "Now I will give you a choice," the host tells you. "You can either stick with the door you originally chose, or you can choose to switch to the other unopened door." Should you switch doors, stick with your original choice, or does it not matter?
You should switch doors. There are 3 possibilities for the first door you picked: You picked the first wrong door - so if you switch, you win You picked the other wrong door - again, if you switch, you win You picked the correct door - if you switch, you lose Each of these cases are equally likely. So if you switch, there is a 2/3 chance that you will win (because there is a 2/3 chance that you are in one of the first two cases listed above), and a 1/3 chance you'll lose. So switching is a good idea. Another way to look at this is to imagine that you're on a similar game show, except with 100 doors. 99 of those doors have coal behind them, 1 has the money. The host tells you to pick a door, and you point to one, knowing almost certainly that you did not pick the correct one (there's only a 1 in 100 chance). Then the host opens 98 other doors, leave only the door you picked and one other door closed. We know that the host was forced to leave the door with money behind it closed, so it is almost definitely the door we did not pick initially, and we would be wise to switch. Search: Monty Hall problem
71.80 %
76 votes
mathcleansimplelogic

Count the number of times the letter "F" appears in the following paragraph: FAY FRIED FIFTY POUNDS OF SALTED FISH AND THREE POUNDS OF DRY FENNEL FOR DINNER FOR FORTY MEMBERS OF HER FATHER'S FAMILY.
It appears 14 times. Make sure to count the "F"s in the word "OF", which people commonly miss.
71.53 %
50 votes
logicmathsimpleclever

We all know that square root of number 121 is 11. But do you know what si the square root of the number "12345678987654321" ?
111111111 Explanation: It's a maths magical square root series as : Square root of number 121 is 11 Square root of number 12321 is 111 Square root of number 1234321 is 1111 Square root of number 123454321 is 11111 Square root of number 12345654321 is 111111 Square root of number 1234567654321 is 1111111 Square root of number 123456787654321 is 11111111 Square root of number 12345678987654321 is 111111111 (answer)
71.41 %
79 votes
logicmathtricky

How can you divide a pizza into 8 equal slices using only 3 straight cuts?
Cut 1: Cut the pizza straight down the middle into two halves. Cut 2: Keeping the two halves in the place, cut the pizza straight down the middle at right angles to the first cut (you will be left with 4 equal quarters) Cut 3: Pile the 4 quarters on top of each other and cut through the middle of the pile. You will be left with 8 equal slices.
71.09 %
74 votes