mathCount the number of times the letter "F" appears in the following paragraph:
FAY FRIED FIFTY POUNDS OF
SALTED FISH AND THREE POUNDS
OF DRY FENNEL FOR DINNER FOR
FORTY MEMBERS OF HER FATHER'S FAMILY.

It appears 14 times. Make sure to count the "F"s in the word "OF", which people commonly miss.

## Similar riddles

See also best riddles or new riddles.

logicmathshortTake 9 from 6, 10 from 9, 50 from 40 and leave 6. How is it possible?

SIX - 9 (IX) = S
9 (IX) - 10 (X) = I
40 (XL) - 50 (L) = X

logicmathConsider the following explanation for why 1=2:
1. Start out Let y = x
2. Multiply through by x xy = x2
3. Subtract y2 from each side xy - y2 = x2 - y2
4. Factor each side y(x-y) = (x+y)(x-y)
5. Divide both sides by (x-y) y = x+y
6. Divide both sides by y y/y = x/y + y/y
7. And so... 1 = x/y + 1
8. Since x=y, x/y = 1 1 = 1 + 1
8. And so... 1 = 2
How is this possible?

Step 5 is invalid, because we are dividing by (x-y), and since x=y, we are thus dividing by 0. This is an invalid mathematical operation (division by 0), and so by not followinng basic mathematical rules, we are able to get strange results like these.

logicmathshort2+3=8,
3+7=27,
4+5=32,
5+8=60,
6+7=72,
7+8=?
Solve it?

98
2+3=2*[3+(2-1)]=8
3+7=3*[7+(3-1)]=27
4+5=4*[5+(4-1)]=32
5+8=5*[8+(5-1)]=60
6+7=6*[7+(6-1)]=72
therefore
7+8=7*[8+(7-1)]=98
x+y=x[y+(x-1)]=x^2+xy-x

logicmathshortWhat is the value of 1/2 of 2/3 of 3/4 of 4/5 of 5/6 of 6/7 of 7/8 of 8/9 of 9/10 of 1000?

100. Looks hard? Don't worry, just work it backwards and you'll find it very easy.

logicmathHow can you divide a pizza into 8 equal slices using only 3 straight cuts?

Cut 1: Cut the pizza straight down the middle into two halves.
Cut 2: Keeping the two halves in the place, cut the pizza straight down the middle at right angles to the first cut (you will be left with 4 equal quarters)
Cut 3: Pile the 4 quarters on top of each other and cut through the middle of the pile. You will be left with 8 equal slices.

logicmathUsing only and all the numbers 3, 3, 7, 7, along with the arithmetic operations +,-,*, and /, can you come up with a calculation that gives the number 24? No decimal points allowed.
[For example, to get the number 14, we could do 3 * (7 - (7 / 3))]

7 * ((3 / 7) + 3) = 24

logicmathThere are n coins in a line. (Assume n is even). Two players take turns to take a coin from one of the ends of the line until there are no more coins left. The player with the larger amount of money wins.
Would you rather go first or second? Does it matter?
Assume that you go first, describe an algorithm to compute the maximum amount of money you can win.
Note that the strategy to pick maximum of two corners may not work. In the following example, first player looses the game when he/she uses strategy to pick maximum of two corners.
Example 18 20 15 30 10 14
First Player picks 18, now row of coins is
20 15 30 10 14
Second player picks 20, now row of coins is
15 30 10 14
First Player picks 15, now row of coins is
30 10 14
Second player picks 30, now row of coins is
10 14
First Player picks 14, now row of coins is
10
Second player picks 10, game over.
The total value collected by second player is more (20 + 30 + 10) compared to first player (18 + 15 + 14). So the second player wins.

Going first will guarantee that you will not lose. By following the strategy below, you will always win the game (or get a possible tie).
(1) Count the sum of all coins that are odd-numbered. (Call this X)
(2) Count the sum of all coins that are even-numbered. (Call this Y)
(3) If X > Y, take the left-most coin first. Choose all odd-numbered coins in subsequent moves.
(4) If X < Y, take the right-most coin first. Choose all even-numbered coins in subsequent moves.
(5) If X == Y, you will guarantee to get a tie if you stick with taking only even-numbered/odd-numbered coins.
You might be wondering how you can always choose odd-numbered/even-numbered coins. Let me illustrate this using an example where you have 6 coins:
Example
18 20 15 30 10 14
Sum of odd coins = 18 + 15 + 10 = 43
Sum of even coins = 20 + 30 + 14 = 64.
Since the sum of even coins is more, the first player decides to collect all even coins. He first picks 14, now the other player can only pick a coin (10 or 18). Whichever is picked the other player, the first player again gets an opportunity to pick an even coin and block all even coins.

logicmathshortHow many times can you subtract 5 from 25?

Just once, because after you subtract anything from it, it's not 25 anymore.

logicmathYou are visiting NYC when a man approaches you.
"Not counting bald people, I bet a hundred bucks that there are two people living in New York City with the same number of hairs on their heads," he tells you.
"I'll take that bet!" you say. You talk to the man for a minute, after which you realize you have lost the bet.
What did the man say to prove his case?

This is a classic example of the pigeonhole principle. The argument goes as follows: assume that every non-bald person in New York City has a different number of hairs on their head. Since there are about 9 million people living in NYC, let's say 8 million of them aren't bald.
So 8 million people need to have different numbers of hairs on their head. But on average, people only have about 100,000 hairs. So even if there was someone with 1 hair, someone with 2 hairs, someone with 3 hairs, and so on, all the way up to someone with 100,000 hairs, there are still 7,900,000 other people who all need different numbers of hairs on their heads, and furthermore, who all need MORE than 100,000 hairs on their head.
You can see that additionally, at least one person would need to have at least 8,000,000 hairs on their head, because there's no way to have 8,000,000 people all have different numbers of hairs between 1 and 7,999,999. But someone having 8,000,000 is an essential impossibility (as is even having 1,000,000 hairs), So there's no way this situation could be the case, where everyone has a different number of hairs. Which means that at least two people have the same number of hairs.

cleanlogicmathshortHow do you make the number 7 an even number without addition, subtraction, multiplication, or division?

Drop the "S".