Every day, Jack arrives at the train station from work at 5 pm. His wife leaves home in her car to meet him there at exactly 5 pm, and drives him home. One day, Jack gets to the station an hour early, and starts walking home, until his wife meets him on the road. They get home 30 minutes earlier than usual. How long was he walking? Distances are unspecified. Speeds are unspecified, but constant. Give a number which represents the answer in minutes.

The best way to think about this problem is to consider it from the perspective of the wife. Her round trip was decreased by 30 minutes, which means each leg of her trip was decreased by 15 minutes. Jack must have been walking for 45 minutes.

A women walks into a bank to cash out her check.
By mistake the bank teller gives her dollar amount in change, and her cent amount in dollars.
On the way home she spends 5 cents, and then suddenly she notices that she has twice the amount of her check.
How much was her check amount?

The check was for dollars 31.63.
The bank teller gave her dollars 63.31
She spent .05, and then she had dollars 63.26, which is twice the check.
Let x be the dolars of the check, and y be the cent.
The check was for 100x + y cent
He was given 100y + x cent
Also
100y + x - 5 = 2(100x + y)
Expanding this out and rearranging, we find:
98y = 199x + 5
Which doesn't look like enough information to solve the problem except that x and y must be whole numbers, so:
199x ≡ -5 (mod 98)
98*2*x + 3x ≡ -5 (mod 98)
3x ≡ -5 ≡ 93 (mod 98)
This quickly leads to x = 31 and then y = 63
Alternative solution by substitution:
98y = 199x + 5
y = (199x + 5)/98 = 2x + (3x + 5)/98
Since x and y are whole numbers, so must be (3x + 5)/98.
Call it z = (3x+5)/98
so 98z = 3x + 5, or 3x = 98z - 5 or x = (98z - 5)/3
or x = 32z-1 + (2z-2)/3.
Since everything is a whole number, so must be (2z-2)/3.
Call it w = (2z-2)/3, so 3w = 2z-2 so z = (3w+2)/2 or
z = w + 1 + w/2. So w/2 must be whole, or w must be even.
So try w = 2. Then z = 4. Then x = 129. Then y = 262.
if you decrease y by 199 and x by 98, the answer is the same:
y = 63 and x = 31.

A swan sits at the center of a perfectly circular lake. At an edge of the lake stands a ravenous monster waiting to devour the swan. The monster can not enter the water, but it will run around the circumference of the lake to try to catch the swan as soon as it reaches the shore. The monster moves at 4 times the speed of the swan, and it will always move in the direction along the shore that brings it closer to the swan the quickest. Both the swan and the the monster can change directions in an instant.
The swan knows that if it can reach the lake's shore without the monster right on top of it, it can instantly escape into the surrounding forest.
How can the swan succesfully escape?

Assume the radius of the lake is R feet. So the circumference of the lake is (2*pi*R). If the swan swims R/4 feet, (or, put another way, 0.25R feet) straight away from the center of the lake, and then begins swimming in a circle around the center, then it will be able to swim around this circle in the exact same amount of time as the monster will be able to run around the lake's shore (since this inner circle's circumference is 2*pi*(R/4), which is exactly 4 times shorter than the shore's circumference).
From this point, the swan can move a millimeter inward toward the lake's center, and begin swimming around the center in a circle from this distance. It is now going around a very slightly smaller circle than it was a moment ago, and thus will be able to swim around this circle FASTER than the monster can run around the shore.
The swan can keep swimming around this way, pulling further away each second, until finally it is on the opposite side of its inner circle from where the monster is on the shore. At this point, the swan aims directly toward the closest shore and begins swimming that way. At this point, the swan has to swim [0.75R feet + 1 millimeter] to get to shore. Meanwhile, the monster will have to run R*pi feet (half the circumference of the lake) to get to where the swan is headed.
The monster runs four times as fast as the swan, but you can see that it has more than four times as far to run:
[0.75R feet + 1 millimeter] * 4 < R*pi
[This math could actually be incorrect if R were very very small, but in that case we could just say the swan swam inward even less than a millimeter, and make the math work out correctly.]
Because the swan has less than a fourth of the distance to travel as the monster, it will reach the shore before the monster reaches where it is and successfully escape.

On the first day they cover one quarter of the total distance.
The next day they cover one quarter of what is left.
The following day they cover two fifths of the remainder and on the fourth day half of the remaining distance.
The group now have 14 miles left, how many miles have they walked?

You have a sock drawer.
It has 4 black socks, 8 brown socks, 2 white socks and 8 tan socks.
You need to pull out a matching pair of socks in the dark.
There is no light and you couldn't see the socks.
How many socks you should pull out in the dark to get one matching pair of socks?

Five. You have only four different colors of socks. If you pick 5, you can surely get one pair of matching socks.

Sam has got three daughters. The eldest daughter is the most honest girl in the universe and she always speaks truth. The middle daughter is a modest woman. She speaks truth and lies according to the situations. The youngest one never speaks truth. Not a single word she spoke was true and would never be true.
Sam brought a marriage proposal for one of his girls. It was John. John wanted to marry either the eldest or the youngest daughter of Sam as he can easily identify whether the girl speaks truth or lie!
John told his desire to Sam. However, Sam laid a condition. He told John that he will not say who the eldest, middle or youngest one is. Also, he allowed John to ask only one question to identify the eldest or youngest so he can marry one.
John asked one question and found the right girl. What was the question and whom should he pick?

The question he asked is, 'Is she older than her?'
He asks this question to one of the daughters.
If he asked this question to older daughter pointing at other two, he probably would know the youngest one! NO matter, she always speaks truth.
If he asked the question to middle one, probably he can choose either.
If he asked the youngest one, she always lies and he can find eldest one. No matter, he has to choose the youngest one based on the answer.