logicYou have a sock drawer. It has 4 black socks, 8 brown socks, 2 white socks and 8 tan socks. You need to pull out a matching pair of socks in the dark. There is no light and you couldn’t see the socks. How many socks you should pull out in the dark to get one matching pair of socks?
.

Five. You have only four different colors of socks. If you pick 5, you can surely get one pair of matching socks.

## Similar riddles

See also best riddles or new riddles.

logicIt was a Pink Island. There were 201 individuals lived in the island. Among them 100 people were blue eyed people, 100 were green eyed people and the leader was a black eyed one.
Except the leader, nobody knew how many individuals lived in the island. Neither have they known about the color of the eyes. The leader was a very strict person. Those people can never communicate with others. They even cannot make gestures to communicate. They can only talk and communicate with the leader. It was a prison for those 200 individuals.
However, the leader provided an opportunity to leave the island forever but on one condition. Every morning he questions the individuals about the color of the eyes! If any of the individuals say the right color, he would be released. Since they were unaware about the color of the eyes, all 200 individuals remained silent. When they say wrong color, they were eaten alive to death. Afraid of punishment, they remained silent.
One day, the leader announced that "at least 1 of you has green eyes! If you say you are the one, come and say, I will let you go if you are correct! But only one of you can come and tell me!"
How many green eyed individuals leave the island and in how many days?

All 100 green eyed individuals will leave in 100 days.
Consider, there is only one green eyed individual lived in the island. He will look at all the remaining individuals who have blue eyes. So, he can get assured that he has green eyes! If there were more than one green eyed people, when the first man looks at the second one with green eyes, the person didn’t leave on day the first day. It means he also has green eyes and the same rule applies to each green eyed man.

logicshortA king has 100 identical servants, each with a different rank between 1 and 100. At the end of each day, each servant comes into the king's quarters, one-by-one, in a random order, and announces his rank to let the king know that he is done working for the day. For example, servant 14 comes in and says "Servant 14, reporting in."
One day, the king's aide comes in and tells the king that one of the servants is missing, though he isn't sure which one.
Before the other servants begin reporting in for the night, the king asks for a piece of paper to write on to help him figure out which servant is missing. Unfortunately, all that's available is a very small piece that can only hold one number at a time. The king is free to erase what he writes and write something new as many times as he likes, but he can only have one number written down at a time.
The king's memory is bad and he won't be able to remember all the exact numbers as the servants report in, so he must use the paper to help him.
How can he use the paper such that once the final servant has reported in, he'll know exactly which servant is missing?

When the first servant comes in, the king should write down his number. For each other servant that reports in, the king should add that servant's number to the current number written on the paper, and then write this new number on the paper.
Once the final servant has reported in, the number on the paper should equal
(1 + 2 + 3 + ... + 99 + 100) - MissingServantsNumber
Since (1 + 2 + 3 + ... + 99 + 100) = 5050, we can rephrase this to say that the number on the paper should equal
5050 - MissingServantsNumber
So to figure out the missing servant's number, the king simply needs to subtract the number written on his paper from 5050:
MissingServantsNumber = 5050 - NumberWrittenOnThePaper

animallogicshortA cat had three kittens: January, March and May. What was the mother's name?

What.
It is stated 'WHAT' was the mother's name.

logicmathshortCan you write number 45 using only the number 4?

44+44/44

logicYou have just purchased a small company called Company X. Company X has N employees, and everyone is either an engineer or a manager. You know for sure that there are more engineers than managers at the company.
Everyone at Company X knows everyone else's position, and you are able to ask any employee about the position of any other employee. For example, you could approach employee A and ask "Is employee B an engineer or a manager?" You can only direct your question to one employee at a time, and can only ask about one other employee at a time. You're allowed to ask the same employee multiple questions if you want.
Your goal is to find at least one engineer to solve a huge problem that has just hit the company's factory. The problem is so urgent that you only have time to ask N-1 total questions.
The major problem with questioning the employees, however, is that while the engineers will always tell you the truth about other employees' roles, the managers may lie to you if they like. You can assume that the managers will do their best to confuse you.
How can you find at least one engineer by asking at most N-1 questions?

You can find at least one engineer using the following process:
Put all of the employees in a conference room. If there happen to be an even number of employees, pick one at random and send him home for the day so that we start with an odd number of employees. Note that there will still be more engineers than managers after we send this employee home.
Then call them out one at a time in any order. You will be forming them into a line as follows:
If there is nobody currently in the line, put the employee you just called out in the line.
Otherwise, if there is anybody in the line, then we do the following. Let's call the employee currently at the front of the line Employee_Front, and call the employee who we just called out of the conference room Employee_Next.
So ask Employee_Front if Employee_Next is a manager or an engineer.
If Employee_Front says "manager", then send both Employee_Front and Employee_Next home for the day.
However, if Employee_Front says "engineer", then put Employee_Next at the front of the line.
Keep doing this until you've called everyone out of the conference room. Notice that at this point, you'll have asked N-1 or less questions (you asked at most one question each time you called an employee out except for the first employee, when you didn't ask a question, so that's at most N-1 questions).
When you're done calling everyone out of the conference room, the person at the front of the line is an engineer. So you've found your engineer!
But the real question: how does this work?
We can prove this works by showing a few things.
First, let's show that if there are any engineers in the line, then they must be in front of any managers.
We'll show this with a proof by contradiction. Assume that there is a manager in front of an engineer somewhere in the line. Then it must have been the case that at some point, that engineer was Employee_Front and that manager was Employee_Next. But then Employee_Front would have said "manager" (since he is an engineer and always tells the truth), and we would have sent them both home. This contradicts their being in the line at all, and thus we know that there can never be a manager in front of an engineer in the line.
So now we know that after the process is done, if there are any engineers in the line, then they will be at the front of the line. That means that all we have to prove now is that there will be at least one engineer in the line at the end of the process, and we'll know that there will be an engineer at the front.
So let's show that there will be at least one engineer in the line. To see why, consider what happens when we ask Employee_Front about Employee_Next, and Employee_Front says "manager". We know for sure that in this case, Employee_Front and Employee_Next are not both engineers, because if this were the case, then Employee_Front would have definitely says "engineer". Put another way, at least one of Employee_Front and Employee_Next is a manager. So by sending them both home, we know we are sending home at least one manager, and thus, we are keeping the balance in the remaining employees that there are more engineers than managers.
Thus, once the process is over, there will be more engineers than managers in the line (this is also sufficient to show that there will be at least one person in the line once the process is over). And so, there must be at least one engineer in the line.
Put altogether, we proved that at the end of the process, there will be at least one engineer in the line and that any engineers in the line must be in front of any managers, and so we know that the person at the front of the line will be an engineer.

cleanlogicshortIt is greater than god, more evil than the devil, the poor have it, the rich need it, and if you eat it, you will die? What is it?

Nothing.

funnylogicshortIf it takes one man three days to dig a hole, how long does it take two men to dig half a hole?

You can’t dig half a hole.

logicThere are 3 switches outside of a room, all in the 'off' setting. One of them controls a lightbulb inside the room, the other two do nothing.
You cannot see into the room, and once you open the door to the room, you cannot flip any of the switches any more.
Before going into the room, how would you flip the switches in order to be able to tell which switch controls the light bulb?

Flip the first switch and keep it flipped for five minutes. Then unflip it, and flip the second switch. Go into the room. If the lightbulb is off but warm, the first switch controls it. If the light is on, the second switch controls it. If the light is off and cool, the third switch controls it.

logicmathshortIf
1 = 5 ,
2 = 25 ,
3 = 325 ,
4 = 4325
Then 5 = ?

1
Already stated 1=5 =>5=1

logicmysteryscary Dodge was staying with Cousin Jamie in Jamie's lakeside cabin. They were setting up Jamie's will. As Dodge was Jamie's closest living relative, much of Jamie's estate was being left to him. One day, Jamie went to Dr Dodge very disturbed. "Doctor," he began, "I have just found out that a man named Georgio wants to get me. He will be here very soon. Where will I go? Where can I hide? If he finds me in here, he will surely kill me. I do not have time to leave this clearing and go farther into the woods."
Dr Dodge thought for a moment, and then grabbed a 5' long bamboo pole, with a diameter the size of a quarter. "Jamie, follow me out to the lake. This lake is 4' deep. If you lie on the bottom of the lake and breathe through this pole, Georgio will never find you. I will be in the bulrushes with a shotgun, and I will shoot him when he comes. I will swim down to find you when he is gone." Jamie consented, and lay down on the bottom of the lake with the bamboo pole in his mouth. A few hours later, a ranger passed by. He found Jamie's body, dead. Dr Dodge told the police of the circumstance, and that Jamie had probably panicked, and died. Police arrested Dr Dodge, on the charges of murdering Jamie. Why?
The bamboo pole did not have any cracks or holes. Its opening was above water the whole time.

Jamie died of carbon dioxide poisoning. The pole was 5' long, but only the size of a quarter. The first time he breathed in, he breathed oxygen. When he exhaled, the air could not travel 5' before he breathed in again. He was just breathing what he exhaled. Before long, all he was breathing was carbon dioxide. He died of CO2 poisoning. Doctor Doge was the one who told him to use the pole, therefore the cause of his death. Dodge is a DOCTOR, and therefore knows about the CO2. Dodge did murder Jamie. His motive: the money in the will.