logicA man comes to a small hotel where he wishes to stay for 7 nights. He reaches into his pockets and realizes that he has no money, and the only item he has to offer is a gold chain, which consists of 7 rings connected in a row (not in a loop).
The hotel proprietor tells the man that it will cost 1 ring per night, which will add up to all 7 rings for the 7 nights.
"Ok," the man says. "I'll give you all 7 rings right now to pre-pay for my stay."
"No," the proprietor says. "I don't like to be in other people's debt, so I cannot accept all the rings up front."
"Alright," the man responds. "I'll wait until after the seventh night, and then give you all of the rings."
"No," the proprietor says again. "I don't like to ever be owed anything. You'll need to make sure you've paid me the exact correct amount after each night."
The man thinks for a minute, and then says "I'll just cut each of my rings off of the chain, and then give you one each night."
"I do not want cut rings," the proprietor says. "However, I'm willing to let you cut one of the rings if you must."
The man thinks for a few minutes and then figures out a way to abide by the proprietor's rules and stay the 7 nights in the hotel. What is his plan?

The man cuts the ring that is third away from the end of the chain. This leaves him with 3 smaller chains of length 1, 2, and 4. Then, he gives rings to the proprietor as follows:
After night 1, give the proprietor the single ring
After night 2, take the single ring back and give the proprietor the 2-ring chain
After night 3, give the proprietor the single ring, totalling 3 rings with the proprietor
After night 4, take back the single ring and the 2-ring chain, and give the proprietor the 4-ring chain
After night 5, give the proprietor the single ring, totalling 5 rings with the proprietor
After night 6, take back the single ring and give the proprietor the 2-ring chain, totalling 6 rings with the proprietor
After night 7, give the proprietor the single ring, totalling 7 rings with the proprietor

cleanshortWhat country makes you shiver?

Chile.

poemsshortA container without hinges, lock or a key, yet a golden treasure lies inside me. What am I?

An egg.

logicmathA women walks into a bank to cash out her check.
By mistake the bank teller gives her rupee amount in change, and her paise amount in rupees.
On the way home she spends 5 paise, and then suddenly she notices that she has twice the amount of her check.
How much was her check amount ?

The check was for Rupees 31.63.
The bank teller gave her Rupees 63.31
She spent .05, and then she had Rupees 63.26, which is twice the check.
Let x be the rupees of the check, and y be the paise.
The check was for 100x + y paise
He was given 100y + x paise
Also
100y + x - 5 = 2(100x + y)
Expanding this out and rearranging, we find:
98y = 199x + 5
or 199x â‰¡ -5 (mod 98)
or 98*2*x + 3x â‰¡ -5 (mod 98)
3x â‰¡ -5 â‰¡ 93 (mod 98)
this quickly leads to x = 31

animalcleanfunnylogicshortA bird, squirrel, and a monkey are running to the top of a coconut tree to get a banana - who will be the first to get to the banana?

None – you cannot get a banana from a coconut tree.

interviewlogicOne day a scholar came to the court of Emperor Akbar and challenged Birbal to answer his questions and thus prove that he was as clever as people said he was.
He asked Birbal: "Would you prefer to answer a hundred easy questions or just a single difficult one?"
Both the emperor and Birbal had had a difficult day and were impatient to leave.
"Ask me one difficult question," said Birbal.
"Well, then tell me," said the man, "which came first into the world, the chicken or the egg?" "The chicken," replied Birbal, very confidently.
"How do you know?" asked the scholar, a note of triumph in his voice.
What did Birbal answer to this?

Birbal told the scholar, "We had agreed you would ask only one question and you have already asked it" and he and the emperor walked away leaving the scholar gaping.

animallogicmathThere are 100 ants on a board that is 1 meter long, each facing either left or right and walking at a pace of 1 meter per minute.
The board is so narrow that the ants cannot pass each other; when two ants walk into each other, they each instantly turn around and continue walking in the opposite direction. When an ant reaches the end of the board, it falls off the edge.
From the moment the ants start walking, what is the longest amount of time that could pass before all the ants have fallen off the plank? You can assume that each ant has infinitely small length.

The longest amount of time that could pass would be 1 minute.
If you were looking at the board from the side and could only see the silhouettes of the board and the ants, then when two ants walked into each other and turned around, it would look to you as if the ants had walked right by each other.
In fact, the effect of two ants walking into each other and then turning around is essentially the same as two ants walking past one another: we just have two ants at that point walking in opposite directions.
So we can treat the board as if the ants are walking past each other. In this case, the longest any ant can be on the board is 1 minute (since the board is 1 meter long and the ants walk at 1 meter per minute). Thus, after 1 minute, all the ants will be off the board.

cleanlogicshortwhat am II have billions of eyes, yet i live in darkness. I have millions of ears, yet only four lobes. I have no muscle, yet i rule two hemispheres. What am I?

I am the human brain. The brain has billions of optic and auditory nerves, four lobes and two hemispheres, and is an organ of the human body.

funnyshortWhat do you call it when your parachute doesn't open?

Jumping to a conclusion.

logicmathshortWe all know that square root of number 121 is 11. But do you know what si the square root of the number "12345678987654321" ?

111111111
Explanation:
It's a maths magical square root series as :
Square root of number 121 is 11
Square root of number 12321 is 111
Square root of number 1234321 is 1111
Square root of number 123454321 is 11111
Square root of number 12345654321 is 111111
Square root of number 1234567654321 is 1111111
Square root of number 123456787654321 is 11111111
Square root of number 12345678987654321 is 111111111 (answer)