Best riddles for teens


A man comes to a small hotel where he wishes to stay for 7 nights. He reaches into his pockets and realizes that he has no money, and the only item he has to offer is a gold chain, which consists of 7 rings connected in a row (not in a loop). The hotel proprietor tells the man that it will cost 1 ring per night, which will add up to all 7 rings for the 7 nights. "Ok," the man says. "I'll give you all 7 rings right now to pre-pay for my stay." "No," the proprietor says. "I don't like to be in other people's debt, so I cannot accept all the rings up front." "Alright," the man responds. "I'll wait until after the seventh night, and then give you all of the rings." "No," the proprietor says again. "I don't like to ever be owed anything. You'll need to make sure you've paid me the exact correct amount after each night." The man thinks for a minute, and then says "I'll just cut each of my rings off of the chain, and then give you one each night." "I do not want cut rings," the proprietor says. "However, I'm willing to let you cut one of the rings if you must." The man thinks for a few minutes and then figures out a way to abide by the proprietor's rules and stay the 7 nights in the hotel. What is his plan?
The man cuts the ring that is third away from the end of the chain. This leaves him with 3 smaller chains of length 1, 2, and 4. Then, he gives rings to the proprietor as follows: After night 1, give the proprietor the single ring After night 2, take the single ring back and give the proprietor the 2-ring chain After night 3, give the proprietor the single ring, totalling 3 rings with the proprietor After night 4, take back the single ring and the 2-ring chain, and give the proprietor the 4-ring chain After night 5, give the proprietor the single ring, totalling 5 rings with the proprietor After night 6, take back the single ring and give the proprietor the 2-ring chain, totalling 6 rings with the proprietor After night 7, give the proprietor the single ring, totalling 7 rings with the proprietor
74.29 %
70 votes

A man who lives in Middletown has two girlfriends, one in Northtown and one in Southtown. Trains from the Middletown train station leave for Northtown once every hour. Separate trains from the station also leave for Southtown once every hour. No trains go to both Northtown and Southtown. Each day he gets to the Middletown train station at a completely random time and gets onto the first train that is going to either Northtown or Southtown, whichever comes first. After a few months, he realizes that he spends 80% of his days with his girlfriend from Northtown, and only 20% of his days with his girlfriend from Southtown. How could this be?
The train to Northtown leaves every hour, on the hour (9:00AM, 10:00AM, etc...). The train to Southtown leaves at 12 after the hour (9:12AM, 10:12AM, etc...). So there is only a 12/60 (1/5) chance that he will end up on the train to Southtown each day, since he will usually get to the station during the 48 minutes of each hour when the train to Northtown will be the next to come.
74.28 %
51 votes

Shadow drove into the Speedy Service Station and pulled up to the pumps. "Fill it up, please," said Shadow. " This may sound strange," said the owner, "but I'd rather fill two cars from out of town than one car from this town." Shadow looked across the small town and replied, "I know just what you mean." Why would the owner feel this way?
The owner would rather fill two cars from anywhere than one car from town because he would make twice the amount of money.
74.28 %
51 votes

A man named Stewart is traveling all over the world. First he travels to Cape Town in South Africa. Then to Jakarta in Indonesia. Then to Canberra in Australia. Then to Rome in Italy. Then to Panama City in Panama. Where does he travel next?
Santiago in Chile. He travels to each continent in alphabetical order then to the capital of the country that has the most southern latitude.
74.28 %
51 votes

Four jolly men sat down to play, and played all night till break of day. They played for gold and not for fun, with separate scores for every one. Yet when they came to square accounts, they all had made quite fair amounts! Can you the paradox explain? If no one lost, how could all gain?
The players were musician.
74.21 %
79 votes